
Fortnite Trailer
Developing a real-time
pipeline for a faster workflow

Contents

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

PAGE

1. Pipeline Development 4
— Linear vs. Real-Time Pipeline 5

— Real-Time Pipeline: A Closer Look 6
—— Rendering Method 7
—— Primary Creative Tool 7
—— Workflow 7
—— Data Organization 8
—— Developmental Model 8
—— Versioning vs. Source Control 9
—— Output Target 10

— Production Concepts 10
—— Sequence Breakdown 11
—— Pre-Production Steps 12
—— Linear vs. Real-Time Pre-production 12

— Fortnite Pipeline 13

2. Pre-production 15
— Story Development 16

— Sequence Breakdown 17

— Rough Layout 17
—— First Unit Previs 17
—— Sequencer Steps 18

— Rough Layout Cleanup 19
—— Defining Levels 19
—— Level Sequences 20
—— Fortnite Level Sequences 20
—— File and Folder Organisation 22
—— Naming Conventions 22
—— Level Visibility 22
—— Level Management 23

3. Production 24
— Production 24

—— Scene Assembly 24
—— Improvements to In-Game Assets 25

PAGE

—— Animation Tests 25
—— Model Resolution 26

— Modeling 26
—— Character Models 26
—— Environment Models 26
—— Materials and Textures 27
—— Dealing with Real-Time Considerations 28
—— Rigging and Animation 28
—— Body Rigs 28
—— Body Animation 28
—— Animation & Rigging Toolset (ART) 29
—— Body Picker 29
—— Last view and Rig Settings 30
—— Pose Editor 30
—— Facial Rigs and Animation 30

— Exporting to FBX and Alembic 32
—— FBX Export from Maya 32
—— FBX Export from ART 33
—— Alembic Export from Maya 34
—— Custom Alembic/FBX Export Tool 35

— Importing to Unreal Engine 36
—— FBX Import to Unreal Engine 36
—— Alembic Import to Unreal Engine 37
—— PCA Compression 38

— Lighting 39
—— Priority Overrides 40
—— Light Rigs vs. Spawnables 40
—— Distance Field Ambient Occlusion 40

4. Effects and Post Processing 41
—— Enemy Deaths 42
—— Storms 43
—— Volumetric Fog 44
—— Final Output 44

5. Project Data & Information 45
— About this Document 47

3

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Fortnite Trailer
Developing a real-time pipeline for a faster workflow

In July 2017, Epic released Fortnite, a video game where players save survivors of a worldwide cataclysmic
storm. Players build fortifications and construct weapons from scavenged materials while fighting
off monsters and other enemies. As of August 2017, the game had over a million players.

In late 2016, in preparation for the game’s release, Epic Games began production on a three-minute cinematic
trailer for Fortnite. Epic’s goal was to create a real-time animated short with the same quality as a pre-rendered
sequence, but which would allow real-time navigation and interaction with the set during the production process.

The purpose of Fortnite’s trailer was to showcase its fun and unique art style, and introduce the
story’s goal as well as gameplay elements such as scavenging, building, and defending.

This document outlines the process of creating the Fortnite trailer using Unreal Engine, with a pipeline
designed to minimize production time while allowing maximum collaboration and creativity.

While Unreal Engine was originally designed as a game development tool, its integration of many
animation pipeline tasks—versioning, rigging, animation, editing, editorial review, changelist
distribution, and others—make it an ideal tool for animation work as well. Its real-time rendering
capabilities contribute to the mix, giving instant feedback for faster work and better results.

Figure 1: Scene from Fortnite trailer

4

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Pipeline Development

5

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Pipeline Development
To develop the pipeline for the Fortnite trailer, the Epic team
first considered the trailer’s goals and the tasks involved.

The trailer contains six sequences comprised of 130
individual shots. Specific goals included:

•	 Final trailer can be played back in
real time in Unreal Engine

•	 Frame rate of 24 fps
•	 Length approximately three minutes
•	 Visual quality of real-time animation at

least as high as pre-rendered.

The major tasks required to create a pre-rendered trailer are
similar to those for a real-time sequence:

•	 Environment and character design
•	 Storyboard
•	 Determination of tools to use (software, hardware)
•	 Sequence breakdown
•	 Assets such as sets, characters,

and rigs created or collected
•	 Rough layout of motion
•	 Sound and dialogue created or acquired
•	 Actions/motions created or collected
•	 Asset editing by multiple team members
•	 Scene building with multiple assets
•	 Animation based on rough layout
•	 Lighting
•	 Rendering
•	 Post processing
•	 Testing output at desired resolution,

playback speed, etc.
•	 Review of work by senior production team members
•	 Final output

The way these tasks are arranged into a workflow, and the
choice of tools to perform these tasks, can have a major
impact on man-hours spent, quality of the result, and even
whether the project is finished at all.

Epic’s goal with the Fortnite trailer was to streamline the
workflow to create a high-quality animation in minimal
production time (and with minimal stress). To achieve this
goal, the team utilized Unreal Engine 4 as the centerpiece of
its pipeline.

Linear vs. Real-Time Pipeline

In the early stages of developing the Fortnite trailer,
the Epic team considered the best way to improve on
traditional pipelines.

Traditional linear animation pipelines take an assembly
line approach to production, where tasks are performed
sequentially. Newer and more holistic pipelines opt for non-
linear and parallel methods to process and distribute data.

While a linear pipeline can produce results, it has
certain drawbacks:

•	 Limitations to changes. In any production,
animation needs to be broken down into distinct
requirements, each of which is critical to the
nuances of performance. An improvement for
a specific requirement might require a subtle
change to an asset’s motion, a set’s lighting, etc.
In a linear workflow, if such a change is required
while later steps are underway, the changes
can be difficult or time-consuming to propagate
throughout the project. Such a limitation can lead to
a reluctance to make changes and improvements,
which ultimately affects the artistic quality of the
production. Since the entire point of the production
is to create the best animation possible, such a
limitation can defeat the purpose of the project.

•	 Post processing required. Traditional linear animation

6

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

studios commonly produce output as layers and
mattes to be composited at the end of the project.
While this approach does allow for a high degree of
control over the result, it adds a great deal to the
overall budget and schedule. Post processing is
often done outside the creating studio, which further
divorces this step from the rest of the production.

To minimize these limitations, Epic needed a new type of
pipeline for the Fortnite trailer. With the tools available in
Unreal Engine, Epic was able to develop a real-time pipeline
that eliminated the problems of a linear pipeline, smoothing
the production process while maximizing artistic quality:

•	 Interactive creative process. The entire production
pipeline is represented within Unreal Engine from
asset ingestion to animation, effects, lighting,
editing, and post production. Reviews can be
performed on each part individually or on the
project as a whole to determine whether changes
are needed. Artists can make iterative changes
easily within Sequencer, the cinematic tool within
Unreal Engine. The time between making a change
and seeing it reflected on-screen is instantaneous,
facilitating an interactive and creative process.

•	 Ease of editing. Sequencer can create, modify,
reorder, or even delete shots in real time.
Sequencer acts as a production hub, combining
aspects of the editorial department with layout
and animation in a non-linear timeline editor.

•	 Faster output. The entire process of post effects can
be dealt with inside Unreal Engine, thus reducing
the need for external compositing requirements.

Using Unreal Engine as an integral part of a real-time
pipeline made additional methods available for improving
visual quality and saving time. The team made the decision
to utilize several of these options for the Fortnite trailer:

•	 Leverage existing game assets.
•	 Deploy an improved facial animation

solution through Alembic caching.
•	 Implement dynamic lighting over baked lighting to

maximize visual quality.

•	 Deploy priority overrides so lighting and objects
in each shot could be adjusted individually.

Real-Time Pipeline: A Closer Look

The real-time pipeline utilizing Unreal Engine was developed
to address the various and minute issues of animation
production, each of them vital to artistic quality, technical
considerations, and conversation of artists’ time.

To illustrate the components of this new type of pipeline,
the following table shows the traditional linear animation
workflow and compares it with a real-time pipeline centered
around Unreal Engine.

Linear Animation
Pipeline

Real-Time
Pipeline

Rendering Method Linear rendering Real-time
rendering

Primary Creative Tool DCC Unreal Engine

Workflow Less Parallel More Parallel

Data Organization Decentralized Centralized

Developmental Model Pull Fetch & Push

Naming Convention Strict More Relaxed

Versioning vs Source
Control

Manual w/
Symbolic Linking

Atomic
Transactions

Output Target Layered Final Pixel Output

Asset Considerations Unlimited Topology Optimized for RT

Table 1: Comparison of linear and real-time pipeline

7

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Rendering Method

Until recently, the difference in quality between pre-
rendered and real-time sequences was noticeable. In recent
years, real-time rendering has improved to the point where,
if done properly, its visual quality is as high as that of pre-
rendered sequences.

A traditional pipeline includes one or more rendering steps.
Real-time rendering doesn’t just eliminate these steps—it
offers a new way of working with all steps in the pipeline.

In a traditional pipeline, the need for a rendering step adds
hours or days between changes and review. With real-time
rendering, changes are visible almost immediately so work
can continue.

Real-time rendering opens the door for the real-
time pipeline, where various tasks can be performed
instantaneously or concurrently rather than in a linear
sequence. The divide created by the rendering step in
a traditional pipeline is minimized and, in some cases,
eliminated altogether.

Primary Creative Tool (DCC vs Unreal Engine)

DCC (Digital Content Creation) software packages like
Maya, 3ds Max, Cinema 4D and Blender are commonly
implemented as the central software packages in a
linear production pipeline. However, these packages are
designed to perform specific tasks in an animation pipeline
such as modeling and rigging, not data aggregation
and organization.

By contrast, Unreal Engine is designed to bring the
production requirements of multiple disciplines and their
data into a centralized framework, where artists can work
on creative tasks in parallel. Additional tools for aggregation
and organization are unnecessary.

Workflow

Ideally, a pipeline allows for production work to be performed
in parallel as much as possible.

This can be accomplished through two primary factors.
The first is the usage of levels and sublevels within Unreal
Engine. With this functionality, supervisors can divide up the
workflow into specific disciplinary stages within the engine.
Artists are free to work on their areas while keeping the
main project file intact. Once work is completed, it’s pushed
back up into to the depot and transmitted to everyone
working on the project.

The second factor, real-time rendering, makes a parallel
workflow possible by eliminating long wait times for
renderings, enabling the team to review changes as soon as
they’re made.

Traditional Linear Real-Time Rendering Next Gen

Editorial

DCC Modelling, Rigging,
Animation, Simulations

DCC Modelling, Rigging,
Animation, Simulations

Rendering

Post Production

Rendering

Final Version

Editorial

Editorial

Post Production

Final Version

Requires re-rendering

Editorial

Figure 2: Comparision of pipelines with traditional
rendering and real-time rendering

8

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Efficient file management is also part of a parallel workflow.
To keep the pipeline moving, artists and programmers can’t
waste time looking for files or editing out-of-date scenes.

Data Organization

In traditional pipelines, data tends be stored across
multiple file servers and various locations with different
naming conventions, which can require carefully-
designed structures and scripts to point to the proper
file. There usually is a “home” directory of sorts, but it can
be confusing.

In a real-time pipeline, data is tracked from a centralized
depot. For this task, Unreal Engine utilizes UnrealGameSync
(UGS), a graphical front end outside Unreal Engine that
synchronizes and builds Unreal Engine projects.

Approved versions of files are published to the depot
where they become available to other users, and all the
files needed for a project can be accessed from this single
user interface.

Though the system was originally designed for game
development, Unreal Engine’s centralized approach to data
management lends itself perfectly to animation production.

Developmental Model

During production, artists are constantly saving existing
files with new information and/or creating new files that
replace older ones. Other artists, in the meantime, need to
know such files have been updated, and need access to the
updated files.

Due to the nature of this workflow, any pipeline’s file
management system must be designed to address
certain needs:

•	 When an artist is working on a specific file, a
mechanism is needed to inform others that
he/she is working on it to prevent double-
work and overwriting of each others’ work.

•	 When the change is complete, the fact that the
file has been changed (or that a different, newer

file is now the one to use) must be recorded.
•	 Other artists who might use these

files must have a way to find out about
changed files, latest versions, etc.

Linear animation production typically relies on pull-based
systems, where the artist chooses which set of files are
required to construct a scene. The artist’s selection is
typically based on a manually-updated list distributed
to artists, or guidance/limitations provided by a custom
version control script.

The manual method tracks access and changes through
written or verbal reports from artists and managers, with
the data stored in a spreadsheet or other application
separate from creation tools. Manual versioning is time-
consuming and prone to error, as it relies on individual(s)
to update the list, and on artists to accurately report work-
in-progress and edits to files. While manual versioning can
work for small, short projects with two or three artists, in
larger teams the errors can quickly compound.

Larger studios sometimes write custom scripts for their
DCCs that assist artists in choosing and tracking assets.
While superior to manual versioning, this approach has its
own drawbacks:

•	 A new script must be written for every
DCC package, and scripts must be
updated for new software versions.

•	 DCC scripting languages are designed to automate
native DCC functions such as modeling and
animation, not to facilitate version management.
A DCC scripting language typically doesn’t
include, for example, a mechanism to lock a file
for editing. A script programmer might find a
clever way to control access using filenames,
but this means any artist’s deviation from the
naming convention will cause tracking to fail.

In short, DCC-based versioning, while better than manual
methods, remains clunky, limiting, and prone to error.

Some studios use Shotgun, a review and tracking software
toolset, as a partial versioning solution. But while Shotgun

9

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

excels at production tracking, it has some limitations as an
asset and version managing system.

With all these processes, the strict rules of reporting and
retrieving are often in direct opposition to the creative
process. An improvement gets lost because the edit
wasn’t recorded, or worse, isn’t done at all because of the
artist’s reluctance to do administrative tasks. (It’s worth
remembering that artists are hired for their artistic talents,
not their project management skills.)

In contrast, the fetch/push system used by the real-time
pipeline utilizes the tenets of ACID database transactions
to manage access and changes to files. With this method,
a user can check out a file from the UGS depot for editing
(as in checking out a book from a library). While an item
is checked out, other users are automatically locked out
from editing it. When the user is done, he checks in the file
which again makes it available to others for editing. The UGS
records the change and disseminates it via a changelist
across the depot.

With such an approach, the three needs identified earlier are
completely fulfilled while at the same time eliminating the
errors and excess time associated with manual and script-
based file management schemes.

Versioning vs Source Control

While traditional linear pipelines typically rely on manual
version histories, versionless masters , and/or sophisticated
version selection scripts, a real-time pipeline uses a single
interface to control all source files including scenes and
engine code.

Unreal Engine itself is editable--a programmer can add
functionality to the engine to improve performance
or customize its behavior. In addition to providing the
reliability of a fetch/push system for asset management,
UnrealGameSync (UGS) provides synchronization and
dissemination tools for any code changes to the engine.

Source control for all files is provided by Perforce P4V, a
leading enterprise version management system. UGS acts
as a wrapper for Perforce to provide a seamless experience

in managing data for Unreal Engine.

UGS is designed to facilitate low overhead and fast iteration
times between designers, programmers and artists. Specific
features offered by UGS:

•	 New changes can be disseminated across the
entire depot, allowing other users to synchronize
to the data. Developers can sync to a changelist
as soon as it’s submitted, and locally compile
the source code matching that change. They
can add comments to each change, or flag
builds as good or bad for other developers.

•	 Compiled editor builds can be zipped, synced
and decompressed automatically for artists.

•	 Engine version files are updated to the synchronized
changelist separately from data, so developers
can make alterations to the engine code without
altering the assets and their usage in the project.
Artists can sync to update engine code without
being forced to download all the assets again,
making synchronization a quick process.

•	 Individual engineers can flag the rest of the team
when they’re working on fixing a broken build.

•	 File activity logs can be displayed alongside
the list of submitted changelists.

•	 Build steps can be customized to utilize project-
specific tools and utilities.

1 A versionless master is a copy of a specific version of a file, or a
symbolic link that points to a version somewhere else. The point of
the versionless master is that the artist can simply load a scene and
all the references to versionless masters in the scene point to the
appropriate files or links. Its intent is to prevent artists from having
to worry about selecting a version—whenever they open their scenes,
they’ll always get the latest version. While versionless masters are
a possible solution to file management during production, they still
need to be maintained and updated with a system of some kind.

10

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Output Target

Traditional linear animation studios commonly take
the approach of rendering their output as layers to be
assembled in compositing with other elements, such
as background matte paintings and effects. While this
approach does allow for a great degree of control over the
result, it adds to the overall budget and schedule.

By contrast, a real-time pipeline embraces a final pixel
output philosophy. The entire production pipeline, from
asset ingestion to animation, effects, lighting, editing, and
post production, is aggregated and represented in a single
module or interface. Whether changes are made upstream
or tweaks are made downstream, the result is updated and
displayed in the WYSIWYG interface as soon as the changes
are made available.

Unreal Engine is designed to support final pixel output.
The real-time aspect of the program’s performance means
users can make iterative changes easily within Sequencer
without overly impacting departments upstream. The entire
process of physics-based simulations and post effects can
be dealt with inside the engine thus reducing the need for
external compositing requirements.

Production Concepts

Animated film production borrows many concepts from
live action movie production. One concept is the linear
division of a project into pre-production, production, and
post-production activities. For live action films, the division
is clearly centered around the shooting process—shooting
the film is production, anything done beforehand is pre-
production, and anything done afterward is post production.

One of the reasons for this clear-cut division of activities
is the cost of assembling a crew for a live shoot. If the
sets aren’t fully prepared (a pre-production step) and the
film crew and actors are standing around waiting, money
is being wasted. In the same vein, having to reassemble a
cast and crew to reshoot a single scene during the post-
production phase can add a great deal of cost.

Traditional Linear Post-Processing Approach

Final Pixel Output Approach

Animation from
DCC scenes Physics-based Simulations

Rendered Layers Rendered Layers

Compositing Post FX

Final Output

Final OutputAnimation from
DCC scenes

Unreal Engine
Physics-based

Simulations & Post FX
in Real Time

Figure 4: Traditional vs. Final Pixel Output pipeline for post processing

Figure 3: Source control with UnrealGameSync

11

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

For similar reasons, traditional linear animation pipelines
follow a clear-cut division of pre-production, production, and
post-production activities centered around the animation
process as the production phase. Set and character design
fall into pre-production, while scene assembly and finishing
are part of post production. Any changes that don’t follow
this linear structure, such as a set change during post
production, adds time and cost.

While this linear approach does result in finished work, it
puts a great deal of pressure on each of the teams to “get it
right” before moving their work on to the next phase.

Conversely, a real-time pipeline is not as rigid—steps
are no longer in a sequential order but can be performed
simultaneously, and some steps that artists are
accustomed to thinking of as production or post-production
steps can be moved earlier to save time. Real-time
rendering and a centralized approach to data storage/
retrieval allow for this fluidity, where any step in the process
can be placed wherever necessary to save time and improve
the quality of the finished work.

Sequence Breakdown

Another concept that animation production borrows from
live film is the sequence breakdown.

Before shooting begins, the director of a live action films
breaks the script down into a series of smaller structures to
help organize story flow and action specifics. This approach
to live action films translates well to the animation process.

Sequence - The script is broken into large chunks called
sequences, with each break occurring at a logical interval.
A common sequence break point is a switch to another
location or subplot.

Beat - Each sequence is broken down into smaller chunks
called beats. A beat is a major action or mini-conclusion to
the action, a switch to a different environment or point of
view, or some other natural division in the sequence.

Shot - Each beat is broken down into individual shots. A
shot includes a specific camera setup (still or moving) and

action from some part of the script. If the same action is
shown from a different camera setup, that’s a different shot.
If a different part of the script is acted out on the same
camera, that’s a different shot.

Scene - The environment where action takes place.
The same scene might be used for several shots in
different sequences.

Take - Duplicate versions of the same shot. The same
camera setup is used and the same action is performed,
but with small (or large) differences in motion, emotion, etc.

Cut - The term cut has several meanings. In live filming, it is
common for the beginning and end of a shot to be trimmed
off during the editing process because they contain items
that aren’t part of the performance, such as the director
saying, “Action!” or an actor entering from offscreen. A
trimmed shot is called a cut, and the action of trimming the
shot is called cutting. The term cut also refers to an edited,
final version of the film. Examples of this usage include
G-rated and R-rated cuts of the same film for different
audiences, or the “Director’s Cut” version of a major motion
picture available only on DVD.

Breaking down sequences is an administrative task that
can take place anytime during pre-production to aid in
organizing work.

12

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Pre-production Steps

Animation projects include these steps at the outset, in
roughly the order listed.

Design - At the start of a project, artists get to work
designing the environment, characters, weapons, and other
scene elements.

Storyboard - Next is a storyboard, a representation of the
entire animation as a series of pictures. A storyboard can
be likened to the comic book version of the animation, with
each image representing an individual action or piece of
dialogue that moves the story forward. Often the storyboard
is a set of hand-drawn cards physically tacked to a wall,
where the cards can easily be moved around during the
review process to refine the story. Software can also be
used for storyboarding provided that images can be easily
moved around during review.

Story Reel - Using editing software, the storyboard images
are arranged into a story reel, a movie sequence with each
image held on screen for the approximate time the scene
will take in the final movie. Sound or dialogue might be
added to aid in the review process. Other names for the
story reel include cinematic or animatic.

Sequence Breakdown - As described in the previous
section, the script is broken into sequences and shots to
organize work.

Rough Layout - A rough layout is rudimentary movie that
replaces each image in the story reel with approximate
motion, sound, etc. By the end of the production process,
each section of the rough layout will have been replaced
with a polished animation sequence to produce the
final output.

Each step—design, storyboard, story reel, and rough
layout—is reviewed by the director and other team members
before going on to the next step.

Linear vs. Real-Time Pre-production

While the overall pre-production steps remain the same for
linear and real-time pipelines, there are differences that
make the real-time pipeline a more efficient approach.

In a linear pipeline, designs must be polished and complete
before pre-production can be considered finished. In a real-
time pipeline, a rough design is sufficient to move through
pre-production, and design can continue in parallel with
production until final, polished designs are achieved.

In a linear pipeline, a rough layout is created through a
laborious process of manual keyframing followed by several
rounds of reviews and corrections. Sequence Breakdown
must be done before rough layout so the keyframing work
can be assigned to artists. In addition, a lot more keyframing
is required during the production phase.

In a real-time pipeline, motion capture (mocap) can be
used to produce an interactive rough layout that can be
reviewed and approved on the fly. The script is broken down
into sequences before the mocap session, but breakdown
into shots is done after after the director has chosen the
mocap takes for the rough layout. This approach also
provides animation keys for motion that has already been
approved by the director, saving review time during the
production phase.

13

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Fortnite Pipeline

A number of tools were used to create the Fortnite trailer,
all of which needed to be incorporated into the production
pipeline with Unreal Engine:

•	 Autodesk® Maya® – Low-poly modeling, UVs,
animation	

•	 Autodesk 3ds Max® - Character
and hard surface modeling

•	 Pixologic ZBrush® - Sculpted details
•	 Modo™ - Retopology tools
•	 Adobe® Photoshop® and Allegorithmic®

Substance Painter - Texture painting
•	 Allegorithmic® Substance Designer -

Materials and textures
•	 xNormal™ - Baking normals for environment assets
•	 Autodesk Motionbuilder® - Motion capture

data processing (data captured with
Vicon motion capture hardware)

•	 Blender® - Dynamic destructive simulations
•	 Adobe Premiere® – Animatic

(offline) editing, final editing
•	 Autodesk Shotgun™ - Production tracking
•	 Vicon® Blade™ - Motion capture

File formats used for data transfer:

•	 Autodesk FBX® - Transfer of environment
meshes and body rigs/animation

•	 Alembic - Transfer of facial rigs/animation

Tools for data sequencing and aggregation:

Unreal Game Sync (UGS) - Asset aggregation and
version control

Sequencer - The production hub, combining aspects of the
editorial department with layout and animation in a non-
linear timeline editor.

Sequencer takes the place of several external applications
by providing editing tools, animation controls, etc. UGS
and Sequencer, when used together, recreate a “studio” like
atmosphere within Unreal Engine itself.

The following diagram shows the production pipeline
developed for the Fortnite trailer.

Even though the entire trailer could be played in real
time within Sequencer, daily reviews were more easily
accomplished in a dedicated screening room. To this end,
each night the entire sequence was rendered to 1920x1080
PNG files (the final output resolution) via Sequencer, and
dailies created for review by both the creative and editorial
teams. This gave supervisors and artists the ability to
review individual shots in detail and capture notes for
creative feedback. The editorial team would conform the
full sequence in Premiere from rendered shots so the
team could review the entire sequence with regard to shot
lengths and pacing. Due to the time to save files to disk,
the rendering/saving process took about an hour and the
conforming process took 2-4 hours.

14

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Figure 5: Pipeline for Fortnite trailer

Final Delivery

Story Development Rough Layout
& 1st Unit Previs

Reindexing
& Conforming

Game Asset Migration
& Enhancement

Storyboards

Temp VO

Story Reel

Editorial

Rough Level Sequence
Definition

Rough Mocap Blocking
(Vicon)

FAT Master Level
Construction

One Offs & Custom
Pickups (Vicon)

Rough Shot Definition

Editorial

Persistent Level &
Sublevel Definition

Shotgun Intergration

Environment Characters

FBX

FBX
Uprez Facial and Body

Topology (3ds Max,
ZBrush, Modo)

Texture Uprez, Remove
Baked Lighting

(Photoshop, Substance
Painter)

Body Rig Enhancement
(Maya)

Uprez Facial and Body
Topology (3ds Max,

ZBrush, Modo)

Set Blocking Reference
for Anim (Maya)

Animation
Process
(Maya)

Dailies

Dailies

EPIC GAMES Fortnite Pipeline
Editorial Unreal Engine Sequencer Production ManagementStudio Process Game Studio Pipeline Mocap or Traditional DCC

Final Look Dev and
Finishing Process

Realtime Rendering
or

Quicktime/EXR Image Output

FBX

Alembic

Manual Perforce
Check-in

Manual Import
to Sequencer

Batch Export to
Engine Process

Final Camera Layout
& Scene Polish

(Sequencer)

Lighting
(Sequencer)

Effects & Post
Processing
(Sequencer) Final VO & Sound Design Final Music Score

Final Editorial

15

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Pre-production

16

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Pre-production
For the pre-production process, Fornite had the advantage
of game level assets and rigs that were already in
production for the Fortnite video game. Additionally,
animation libraries for the husk characters (enemy
monsters) were available for use by the animation team
along with completed scene assemblies where action
took place. As a result, the conceptual design phase,
typically required by any type of production, wasn’t required
and progress could move forward directly into story
development and layout.

Story Development

Fortnite started with traditional storyboards to figure out
the story content of the piece. These storyboards were
scanned and imported into Premiere Pro to construct an
offline edit and story reel. The story reel served as an initial
shot breakdown and timing resource for the rough layout
workflow. New concept art was developed to establish the
mood of the scene and detail the look and feel of the set.

Figure 6: In-game character assets pulled for Fortnite trailer

Figure 7: Storyboards

17

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Sequence Breakdown

In breaking down the Fortnite trailer, the pre-production
team looked at the animation portion as a three-minute
short film, and broke it up into sequences, beats, and
shots accordingly.

The animation takes place in three locations (scenes) with
two different activities at each location, which made the
change of location and activity a logical breakpoint for
dividing up the animation into six sequences.

Sequences were not divided into beats or shots at this
stage. Instead, the division of shots and beats came
naturally through the rough layout process, once the motion
was roughed out with mocap.

Rough Layout

To speed up the layout process, the Fortnite team bypassed
traditional approaches to rough layout and instead
implemented motion capture to block out the rough
action, giving give more creative control to the director and
cinematographer and saving overall production time.

In a traditional rough layout process, the story reel would
be supplied to the Layout Supervisor, and then multiple 3D
artists would work within one or more DCCs (digital content
creation packages) to block out character movement and
camera placement using stepped keyframe animation.
Artists normally work for days, perhaps weeks, constructing
rough layout shots that are then sent back to editorial
for integration into the sequence, with each keyframed
sequence replacing one or more storyboarded shots. These
shots are then reviewed by the director, and any sequences
that require changes are sent back to artists.

The use of Unreal Engine for rough layout presented an
opportunity to shortcut this laborious process. Using the
Sequencer, motion capture sequences could be quickly
imported, reviewed, edited, and re-captured until the
director was satisfied with the motion. The time to create
and iterate an approved sequence for rough layout was
shortened from days/weeks to hours.

The Fortnite team called this approach First Unit Previs,
combining filmmaking terms for the principal photography
team (first unit) and methods for visualizing complex action
prior to actual filming (previsualization or previs).

All motion was captured with Vicon Blade using
Motionbuilder, then cleaned up and validated in Maya and
exported into Unreal Engine Sequencer.

First Unit Previs

Though more technically intensive, First Unit Previs upends
the slower, traditional rough layout approach of manual
keyframing. Because the director and cinematographer are
free to conceptualize the movie by their own hands, the result
is a more natural cinematic approach to the layout process.

Prior to the motion capture session, a rough version of
each scene was built with placeholders for environmental
elements such as the ground and buildings. The storyboard
called for a new, crumbling version of the existing Durrr-
Burger restaurant, so the initial asset was modified to help
describe and inform the narrative.

2 Block or block out: To determine an actor’s movements for a
performance. The term originates from early live theater, where
actors’ stage directions were sometimes worked out by moving
around blocks of wood on a miniature stage model, with each block
representing an actor. The act of determining actors’ movements,
and the resulting plan itself, both came to be known as “blocking”.

Figure 8: Motion capture session

18

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Each scene also included low-resolution versions of game
characters and their rigs for testing the mocap action.
Having these elements in place at the start kept the time
and expense of the motion capture session to a minimum.

For the Fortnite First Unit Previs session, actors acted out
the script and their actions were captured through multiple,
long master mocap takes. Each take’s mocap was put on a
character rig within the environment so the performances
could be reviewed.

These performances were analyzed to determine which
ones were best for the purposes of the trailer. The best long
takes became the basis of the interactive rough layout,
where the director and others could review, re-capture, and
swap out motions until they were satisfied with the result.

Sequencer Steps

Each sequence is imported as a Level in the Sequencer. For
game design, a Sequencer Level is designed to hold what
you’d expect—an individual level in a game, separate from
all other levels. Each level can then be reviewed and edited
as its own entity, while still giving access to data and assets
from other levels for editing and fine-tuning.

These same tools are ideal for animation production. With
each sequence as a separate Level in the Sequencer,
sequences can be reviewed and edited separately while still
allowing access to data from all levels.

The work sequence for Fortnite First Unit Previs was
as follows:

•	 Mocap actors perform an entire sequence.
•	 The mocap is put on a character in the rough

environment and reviewed by the director until he
feels there is a decent take of the entire sequence.

•	 The best take of the entire sequence, as selected
by the director, is imported into the Unreal Engine
Sequencer as a Master Level sequence. This long
master take is referred to as the Fat Sequence.

•	 While the motion capture session is still active,
the director reviews the Fat Sequence and
determines whether portions of it need to be
replaced or additional one-offs added.

•	 For portions that need to be replaced, either portions
of other versions of the sequence are selected, or
the mocap actors perform the required retakes.

•	 The replacement take is imported into the Sequencer

The review/replace process was repeated for each
sequenced level until the director and the team were
satisfied with the rough layout. From this process, shots
and beats naturally emerged as the director crafted
the sequences.

Note: Epic captured camera positions during Mocap, but
camera positions can also be blocked in Unreal Engine
with cine cameras if they aren’t captured during the
Mocap process.

Figure 9: Mocap data on in-game character for analysis

19

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Rough Layout Cleanup

During motion capture sessions and director review,
levels and sequences were created quickly and loosely
to keep up a brisk pace and finish motion capture as
quickly as possible. Very little attention was given to finer
administrative tasks during this fast-paced step.

Once rough layout was approved, a second step of
organization was required: re-indexing shots, redefining
levels, and conforming sequences into a more
orderly fashion.

Defining Levels

In Unreal Engine, every object that the viewer sees or
interacts with resides in a Level. A Level is made up of a
collection of meshes, volumes, lights, scripts, and more all
working together to bring the desired visual experience to
the viewer (or player, if creating a game). Levels in UE4 can
range in size from massive terrain-based worlds to very
small levels that contain just a few elements.

Levels are created and organized within the Sequencer’s
Level Editor. By default, the Level Editor always contains a
Persistent Level. This is the base level for the sequence—
anything placed directly on this level will persist through
all sublevels.

It is common to leave the Persistent Level itself empty,
and establish sublevels under it for scene assembly
environments, specific sequence- or shot-based effects,
routinely used characters that are common across
sequences and shots, environments and props, light rigs,
Blueprints, and post-processing devices.

Sublevels could be thought of as performing the same
function as layers in a DCC. When a sublevel is made
current, all work done is added to that sublevel. In addition,
sublevels can be hidden or unhidden at any time.

Levels have the additional feature of providing a master
animation track that can be referenced into a DCC such
as Maya.

Fortnite’s level organization included:

•	 Persistent Level
—— Environmental sublevels
—— Character sublevels
—— Cine sublevels
—— Lighting sublevels
—— Blueprint sublevels3
—— Post Processing sublevels

For additional information on defining sublevels, adding or
moving actors, visibility settings and streaming methods,
please see Managing Multiple Levels in the Unreal
Engine documentation.

3 In Unreal Engine, a Blueprint is a container for a script
created with visual tools (node relationships). Blueprints are
used to control in-game or cinematic action without the need
for coding. For example, in a game, a Blueprint might hold
a trigger to open a door when a character approaches.

20

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Level Sequences

Motion and animation within a Level is defined through a
Level Sequence made up of Tracks. A single Track could
contain just the character animation, transformations
(object movement), audio, or any number of other discrete
elements of a sequence. A Track can also contain an
entire shot.

In Unreal Engine, a Level Sequence is treated as an
individual object within its Level. A Level Sequence can be
likened to a container for a cinematic scene—basically a
movie editor contained inside an object.

Because Level Sequences are self-contained assets,
a Level Sequence can be embedded within another
Level Sequence.

By default, a Level Sequence is built from the top
down—tracks lower in the Level Sequence hierarchy take
precedence. This allows filmmakers to build a pipeline they
are accustomed to, where adjustments at the shot level
override the Sequence they are contained in.

Fortnite Level Sequences

The Level Sequences for the Fortnite trailer followed this
general structure:

•	 Top Level Sequence for entire trailer
•	 Sequence 1 Level Sequence

—— Shot A Level Sequence
—— Tracks for the shot (camera, lighting,
characters, shot-specific audio, etc.)

—— Shot B Level Sequence
—— Tracks for the shot

—— (additional shots and tracks)
—— Visibility track for Sequence 1

•	 Sequence 2, 3, etc. broken out in the same way
•	 Audio main track
•	 Fade track
•	 Visibility track for Top Level Sequence

Note that the top level sequence has a visibility track, as
does each sequence Level Sequence. In addition, Audio and
Fade tracks are under the top level to allow control of these
elements throughout the entire trailer.

The structure for the Fortnite trailer’s Level Sequences is
shown in the following diagram, showing the first sequence
and its first shot broken out into tracks.

A master FILM Level Sequence named Launch Trailer
contains all six of the trailer’s sequences, each with its own
Level Sequence. Each of these Level Sequences contains
shots, with a Level Sequence for each shot. Inside these
shot Level Sequences are tracks for character animation,
VFX, lights, camera, etc.

Figure 10: Add Level Sequence option

21

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

FILM
(Level Sequence)

Sequence Op
(Level Sequence)

Sequence Db
(Level Sequence)

Sequence Mt
(Level Sequence)

Sequence Hf
(Level Sequence)

Sequence Sf
(Level Sequence)

Sequence De
(Level Sequence)

Audio_Main
(Track)

Fade
(Track)

Level Visibility
(Track)

op0020_001
(Level Sequence)

op0030_001
(Level Sequence)

Level Visibility
(Track)

op0010_001
(Level Sequence)

Cameras
(Folder)

Characters
(Folder)

Lighting
(Folder)

Props
(Folder)

Storm Clouds
(Folder)

VFX
(Folder)

op0010_shotcam
(Track)

Constructor
(Folder)

Ninja
(Folder)

Outlander
(Folder)

Ramirez
(Folder)

Spotlights
(Tracks)

op0010_anim_Hammer
(Track)

Storm_PointLights
(Intensity Tracks)

P_Debris
(Activation Tracks)

op0010_anim
(Track)

op0010_anim_Head
(Track)

Figure 11: Level hierarchy for Fortnite trailer

22

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

File and Folder Organization

File organization goes hand in hand with setting up tracks.
Each track should have at least one corresponding folder to
hold all the data for that track.

The folder structure Epic used for Fortnite’s tracks is shown
in the diagram. While many tracks utilized a single folder, the
animation tracks accessed several character folders.

Naming Conventions
•	 Top Level Sequence (FILM): Launch Trailer
•	 Sequence Level Sequences: OP_Seq, HF_Seq, etc.
•	 Shot Level Sequences: OP_0010, OP_0020, etc.

A naming convention that utilized short names made it
easier to manage shots and sequences in Unreal Engine.

Another useful method of ensuring organization of the
trailer was to assign official shot numbers to the trimmed
motion capture takes and their respective level sequences.
The shot numbers followed a traditional film style approach
by combining a two-letter sequence designator with
a four-digit shot number followed by take number, for
example db0010_001.

Level Visibility

Level visibility is an important concept within Unreal Engine.
As shown in Figure 8, the FILM level sequence has a Level
Visibility track, and each Sequence also has its own Level
Visibility track within that Level Sequence.

External scenes are referenced directly through the Level
Visibility track. When a level becomes visible, this triggers the
loading of these external scenes and any shots under that
Level Sequence.

Although a Level Visibility track can be used in any place
where tracks can be added, Epic opted to use them only at
the FILM and Sequence levels. In general, shots don’t need
Level Visibility tracks, as they should always be visible within
the sequence. If something within a shot needs to appear or
disappear, a per-object Level Visibility track would be used.

Figure 12: Level Visibility for current sequence

23

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Level Management

The level location for an asset can be checked from the
World Outliner window by clicking the arrow on the top right.

If the Sequencer window is open, the World Outliner will
also show which Sequencer(s) the object is associated
with. The World Outliner shows all the items in a scene in a
hierarchical view.

While playing in the FILM Level Sequence; objects might
disappear and reappear in the World Outliner. This is normal
operation as it reflects the state of Level Visibility.

For additional information on Level Sequence and the
Sequencer Editor, see Sequencer Overview in the Unreal
Engine documentation.

Figure 13: World Outliner

24

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Production

25

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Production
Scene Assembly

While modeling, rigging, and animation for each asset
in the Fortnite trailer was done with a DCC package, the
final assembly of each scene was done in Unreal Engine.
This approach differs from a traditional CG pipeline, where
environments are assembled within the DCC package itself.
By finalizing each asset separately within a DCC package
and aggregating them in Unreal Engine, the team was
able to work on characters and environmental elements
in parallel.

Transfer of data between DCCs and Unreal Engine would be
accomplished with either of two file formats.

•	 FBX – For transfer of models and editable/
animatable rigs to the Unreal Engine
Animation & Rigging Toolset (ART)

•	 Alembic – For transfer of complex
animation as baked morph targets

While both Alembic and FBX can be used for exchanging
information between DCCs and other pipeline programs,
they store data differently. The Unreal implementation of
an Alembic file stores data as “baked” information—the
animation of a character, for example, is stored as a series
of vertex positions, basically a set of morph targets with
no accompanying rig. Conversely, FBX retains information
about rigs, their associated models, and skinning settings.
In other words, a rig transferred to Unreal Engine via FBX
can still be edited in a DCC, while Alembic files don’t retain
this functionality.

Improvements to In-game Assets

Given the importance of making a significant improvement
in quality between the Fortnite game and trailer, Epic
needed to make improvements to existing in-game
models, textures, and rigs to improve the quality of the
final animation. At the same time, the final version needed
to remain lightweight enough memory-wise to allow real-
time playback.

Animation Tests

As a first step in determining the improvements needed,
the Fortnite team tested existing in-game models and rigs
against the mocap animation supplied by First Unit Previz.
These original rigs had been created with Unreal Engine’s
Animation & Rigging Toolset (ART). ART works in conjunction
with Maya, operating within Unreal Engine but calling various
rigging functions from Maya as needed.

In reviewing the animation tests, the team quickly found
that improvements were needed in two areas:

•	 Body rigs – Model resolution would need to be
increased to support body deformation. The
existing rigs for in-game characters would
provide a basis for the trailer characters’ rigs,
but would need to be augmented in ART.

•	 Facial rigs – Existing facial models and rigs would
be insufficient for the level of fidelity the animators
wanted. In addition to rebuilding character heads
at a higher resolution, and a different rigging/
animation workflow would need to be implemented
to support real-time playback with the higher
quality level. Facial rigs would be created directly
in Maya to leverage Maya tools not available with
ART, then exported via Alembic to utilize the
greater per-vertex control that Alembic offers.

26

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Model Resolution

Epic determined that for the Fortnite trailer, they would
need to use higher-resolution models than would normally
appear in a game world, not only for characters but for
environmental elements. While higher-resolution models
improve the appearance of an animation, increasing model
resolution introduces additional considerations:

•	 While tools exist to increase resolution automatically,
new polygons must be adjusted and tweaked
manually to get the maximum benefits.

•	 Texture resolutions need to be increased
to support the new geometry.

•	 Increased resolution also increases the amount
of memory required to play back the animation.
Care must be taken not to increase resolution
so much that playback would suffer.

•	 Character rigs must be adjusted or
replaced to leverage the new polygons
and improve animation fidelity.

•	 Deformation of high-resolution characters during the
trailer animation could be quite different from in-game
deformation, meaning rigs and keys that worked on
the low-resolution model might need to be adjusted.

Modeling

To create the models used for the Fortnite trailer, existing
in-game assets were exported to 3ds Max, ZBrush, Modo,
and Maya for further work.

Character Models

To begin work on character models, artists separated each
asset into separate meshes. Technical Animators advised
on how the characters should be broken down to best
facilitate rigging and animation.

Resolutions of all body model parts were increased to help
with deformations and physics.

Because of the new rigging and animation approach for
the heads, character head geometry was swapped out with
high-resolution universal topology. Although each character
retained its unique appearance, the topology itself was
consistent from one character to the next. This approach
saved time in rigging and animation, as similar rigs could be
used for all characters.

Asset resolution for each character was around
185,000 triangles.

Environment Models

Epic’s objective for this project was to expand on the world
and environments of Fornite while ensuring the piece would
still run in real time.

For items in the environment, the Fortnite team started by
increasing model resolution of simple assets to define the
level of fidelity required, and to inform the direction for the
remaining environmental assets.

Environment assets were exported back to Unreal Engine
via FBX.

Figure 14: Separating character head, body, clothing

Figure 15: High-resolution characters and heads

27

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Materials and Textures

In-game materials and textures were exported along with
models via FBX. Some textures included baked lighting,
which had to be removed for the Fortnite trailer.

Many textures needed increased resolution to work with
the improved models. The Fortnite team used Substance
Designer to improve existing textures based on the
new topology.

Substance Designer provides a vast improvement over
the traditional technique of creating multiple unique 2D
bitmaps. Substance Designer can use both bitmaps and
vector graphics as a base for materials, and includes tools
for importing mesh information, adding ambient occlusion,
and propagating changes at the base level throughout
several materials.

Once the textures were complete, body textures were
exported from Maya via FBX format. Because the facial rig
and animation required Alembic export, facial textures were
exported via the Alembic format.

Materials and textures must be set up in a certain way in
Maya to export properly into Unreal via Alembic. In Maya,
the material shading group name must be assigned to the
geometry’s component-level faces to match the material
name in Unreal Engine.

For FBX export, the Maya Material Node is assigned to
object level geometry.

For both Alembic (Shader Group) and FBX (Material Node),
the material must be assigned at the face level in Maya
rather than the mesh level.

Figure 16: Assigning materials to a character’s body

Figure 17: Matching names of shading group
nodes with materials in Unreal Engine

Figure 18: Facial materials in Maya

28

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Dealing with Real-Time Considerations

Throughout the environment, Epic needed to be conscious
of not going overboard on triangles and textures so the
Fortnite trailer could maintain a solid real-time performance.
With the combination of new high-resolution assets and
the world continuing to be built out to support the creative
process, the Fortnite team quickly became bound by the
number of objects in the scene.

The team optimized the set by removing any objects from
the initial game environment that didn’t contribute to the
trailer’s narrative. In addition, once final cameras were in
place, they removed backs of buildings and anything else
that wasn’t in a direct field of view.

These creative and technical decisions allowed the Fortnite
team to produce a stunning visual environment that helped
drive and support the stylized narrative. In doing so, it
enabled Epic to push the boundaries of what’s possible in a
real-time format.

Rigging and Animation

Because of the decision to use a Maya/Alembic workflow
for facial rigs rather than ART/FBX, different workflows were
used for body and facial rigging.

Body rigs were created in-house with ART. Due to time
constraints, facial rigs were outsourced to a third party who
created custom rigs per character. They imported the ART
body rigs, added the custom face rigs, and sent the new,
combined rigs back to Epic.

Once the combined ART and custom face rigs arrived
back in-house, they were shipped to an outside vendor for
animation in Maya. The vendor received both the rigs and
the layout files of the shots in the cinematic from Epic.

When the animated sequences were complete, their Maya
files and animation movies were shipped back to Epic and
imported into Unreal Engine. As the Fortnite team reviewed
each sequence, in-house animators added and edited
motions based on the changing cut.

Body Rigs

While the original in-game rigs were mostly sufficient to
support the needs of the Fortnite trailer, leaf nodes were
added to the body rigs to provide more complex dynamics
and help with deformations.

With a rig generated from ART, the joint/deformation
hierarchy is automatically separated from the rig control
structure, making it easier to export the rig and its
animation to Unreal Engine afterward. This general design
can also be implemented manually within Maya, even if ART
is not being used for rig construction.

Body Animation

Body performance was a combination of mocap from the
rough layout stage and keyframed animation.

The environmental blocking placeholders constructed
during First Unit Previs were exported out of Unreal Engine
as FBX files. When imported into Maya, the result was a
simple, gray reference geometry that provided animators
with a visual guide to animate against.

Figure 19: ART rig with separate joint and control hierarchies

29

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Animators used standard animation techniques to refine
body animation for their shots, using the ART tools to help
simplify their workflow. When animation was complete, the
animation was exported back to Unreal Engine via FBX.

Animation & Rigging Toolset (ART)

In addition to an interface for skeleton creation, skeleton
placement, and rig creation used to generate the initial
rig, Unreal Engine’s Animation & Rigging Toolset (ART) is a
full suite of animation tools and user interface including a
body picker, options for importing mocap or animation data
and exporting to FBX, pose tools, mirroring options, space
switching settings, and more. Below are descriptions of the
three tabs used by animators as well as the side gutter of
buttons for various tools.

Body Picker

The Picker tab displays a body picker where an animator
can quickly select a body part to get access to that part
of the rig. Animators at Epic use the ART body picker to
help them animate the various characters on all of Epic’s
internal projects.

Figure 20: Reference geometry in Maya

Figure 21: ART Body Picker

30

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

List View and Rig Settings

The List View and Rig Settings tabs include tools for
selection, import/export, space switching, rig visibility and
set creation utilities.

Pose Editor

The Pose Editor saves and loads custom poses.

Facial Rigs and Animation

During the animation tests, the Fortnite team determined
that a new workflow was needed for facial rigs and
animation. The team decided to use Maya rather than
ART for rigging, and to export the data via Alembic rather
than FBX.

For the Fortnite trailer, the team used Maya lattices for
facial deformation. A lattice is a virtual cage around a set of
vertices. The points of the lattice can be pushed and pulled
to deform the lattice into different shapes, and the vertices
inside the lattice follow along to a greater or lesser degree
depending on their proximity to the part being deformed.

Lattices are useful for animating groups of vertices in a
subtle and natural way. Since ART doesn’t support lattices,
the team needed to use Maya directly to implement
this approach.

The team also wanted to use blend shapes, another Maya
feature not supported by ART. Blend shapes are different
versions of the same model, in this case several versions
of a character’s head with different facial expressions.
When the rig is animated, the facial shapes blend from one
expression to the next.

The final facial rig was a combination of 201 joints, lattices,
and blend shapes. All characters’ heads had universal
topology and the same facial rig, making it possible to share
rigs between characters.

Blend shapes can be exported/imported via FBX, but
deformers, including lattices, cannot. Then the team
encountered another challenge that informed their decision
to not use FBX export for facial animation. When setting up
a rig, each vertex can be influenced by several joints, blend
shapes, and lattices. At the time of the Fortnite trailer’s
production, FBX format was able to export up to eight
influences per vertex, but the team needed more than that
to get the facial performance they wanted. Alembic can
export unlimited influences per vertex, making it a better
choice for facial rig and animation export.

The face rigs consisted of weighted joints constrained to
Figure 23: ART Pose Tool Window

Figure 22: ART List View and Rig Settings

31

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

nulls (handles) which have blend-weighted set-driven keys,
giving animators the ability to control eye movements and
facial muscle groups. An upper layer of tweak controls
grouped the individual controllers for easier animation of
broad motion, such as opening the jaw.

The facial rig provided on-surface controls for animators to
move as needed, as opposed to a virtual control board.

All facial performance was manually keyframed in Maya.

Figure 24: Facial rig in context with body rig

Figure 26: Facial performances

Figure 25: On-surface facial controls

32

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Exporting to FBX and Alembic

During the process of fine-tuning animation, each time
an in-house animator made an update to a body or prop
animation in a Maya scene, an FBX file encompassing the
changes was exported. If a change was made to facial
animation, the changes were exported via Alembic format.

There are a few ways to perform the export using Maya’s
internal commands or the FBX exporter in ART tools.

FBX Export from Maya

Even though FBX export is an option in ART, this
demonstration shows the actual Maya settings, and will
use standard Maya operations to better illustrate what is
happening under the hood.

Before FBX export, animation must be baked on to joints
to remove the controls and constraints so only the joint
animation is passed to Unreal Engine. To do this, select
all the joints for the character and choose Edit > Keys >
Bake Simulation from the Maya menu. The separate rig/
deformation and control hierarchy mentioned earlier makes
this step easier.

Click Bake to bake the joints.

Select the joints and export to FBX over the desired
frame range.

For more information, see the FBX Animation Pipeline topic
in the Unreal Engine documentation.

Figure 27: Bake Simulation menu option

Figure 28: Bake Animation Options dialog

33

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

FBX Export from ART

This demonstration uses the shot DB0137 from the Fortnite
trailer to visually demonstrate the steps for FBX export
directly from ART.

With the scene and rig loaded, click the Export Motion
button. This opens the Export Motion dialog.

On the Export Motion dialog, select options and click Export
FBX. This automatically creates a copy of the rig and bakes
all the motion to it before creating the FBX file, performing
the same steps that are required manually when exporting
from Maya.

Figure 29: Scene loaded in ART

Figure 30: Export Motion button

Figure 31: Export Motion dialog in ART

34

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Alembic Export from Maya

To export the deforming facial animation in Maya to Alembic
for use in Unreal Engine, the facial meshes first had to be
triangulated in Maya with the Triangulate tool under Mesh.

To export to Alembic format, select the meshes to export
and choose Cache > Alembic Cache > Export Selection to
Alembic from the Maya menu.

This opens the Options dialog with export settings.

 Figure 34: Options dialog for Alembic export

Figure 32: Facial mesh before and after triangulation

Figure 33: Export Selection to Alembic

35

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Custom Alembic/FBX Export Tool

Having to export to two different formats quickly became
cumbersome for the animation team. To solve this problem,
Epic developed a tool to export from Maya to both FBX and
Alembic simultaneously from a single interface.

This tool, called Cinematic Exporter, is not currently included
as part of the ART toolset. However, Epic was able to
develop this custom tool quickly in the heat of a fast-paced
production, further shortening the Maya-to-Unreal pipeline.
It is included here to illustrate how a small custom solution
based on a pipeline’s specific needs can leverage Python
within Maya to shorten production time.

Cinematic Exporter launches from a pull-down menu in
Maya. The left side of the interface populates a list of all the
exportable nodes it finds in the scene. To export, select the
nodes for which data needs to be exported.

By default, both FBX and Alembic (ABC) files are exported,
but either file type can be selected alone. The frame range
is automatically set to the timeline’s current active frame
range, but can be changed.

An output path has to be set for the export to initialize. For
the Fortnite workflow, this was a location in Perforce.

Clicking the Export button launches a Maya process to
export the data using the settings described in the FBX
Export from Maya and Alembic Export from Maya sections.
The process runs in the background, meaning the artist can
still use Maya while export is taking place.

The exported data is placed in named folders within the
output folder for easy location for import.

To give Cinematic Exporter the ability to recognize
exportable rigs, the technical animators/riggers at Epic
created a scripted node, a dummy object with export data
attached to it, and placed one of these nodes on all the
scenes that included rigging. When Cinematic Exporter
is launched, it populates the list with exportable heads,
characters and props based on the export nodes it finds
in the scene. Export nodes were designated as specific
to Alembic (for heads) or FBX (for bodies/props) using a
custom tool.

Figure 35: Cinematic Exporter node selection

36

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

The exported data is organized into folders for easy import.

Importing to Unreal Engine

The final step is to import both the FBX and Alembic files
(ABC) into Unreal Engine.

FBX Import to Unreal Engine

FBX files for body and prop animations were imported to
Unreal Engine using its FBX import tool.

Figure 36: Utility to set Alembic and FBX export nodes

Figure 37: Organization of exported files

Figure 38: Highlight FBX folder before choosing Import option

37

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Alembic Import to Unreal Engine

Alembic files for facial animation were imported to Unreal
Engine using its ABC import tool. The data is imported as
morph targets using PCA compression.

Alembic files were imported with the Skeletal option.

Figure 40: Imported animation applied to character

Figure 39: Unreal Engine FBX Import Options dialog

Figure 41: ABC folder selected before starting import process

38

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

The morph targets generated by the Alembic importer can
be viewed in the Morph Target Preview window.

Morph target playback is an intensive operation that works
best when GPU processing is used. In preparation for using
the morph targets in real-time playback, the Use GPU for
computing morph targets option should be turned on. To
access this option, from the File menu choose Edit > Project
Settings > Rendering > Optimizations.

Figure 42: Alembic import options

 Figure 43: Morph Target Preview window

Figure 44: Use GPU for computing morph targets option

39

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

PCA Compression

When an animation is exported via Alembic, the ABC
files stores the position of every vertex on every frame.
For a model with over 150,000 triangles in a two-minute
animation, the amount of data can add up very quickly.
Analyzing and playing back such a large volume of data in
real time isn’t feasible.

Instead, Unreal Engine imports and stores Alembic
animation data using Principal Component Analysis (PCA)
compression to reduce the amount of data yet still keep
animation quality high. During import, poses are extracted
and weighed to determine the “average” pose and other
poses’ differences from the average. These differences
are analyzed to determine which frames would make the
best morph targets, and only the data from these frames
is stored. In effect, the process distills the enormous
amount of vertex-based animation data to a smaller, more
manageable data set.

During playback, Unreal Engine loads the morph target data
into memory and blends them per-frame in real time. In

this way, the Fortnite facial animation exported via Alembic
format could be played back in real time in Unreal Engine.
AnimDynamics, another UE feature, was also used to
enhance the characters’ secondary animation detail such as
hair and clothing movements, all in real time.

Lighting

Originally, Fortnite intended to implement a baked lighting
solution to increase the playback performance of the
trailer. Many of the existing game assets that were utilized
and enhanced for the trailer already had a baked lighting
solution within their texture maps. However, baked lighting
proved to be too restrictive for directors who wanted to
adjust lighting more intuitively.

Fortnite chose to forego baked lighting in favor of the
increased flexibility of dynamic lights with cast shadows.
This allows shot-by-shot adjustments of lighting values and
set dressing placement.

Figure 45: Real-time playback of Alembic facial motion in Unreal Engine

40

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Priority Overrides

Unreal Engine can implement attribute priority overrides to
objects and lights within the scene. This allows artists to
effectively establish a lighting rig on Level Sequence and
then override those settings (both transitional and lighting
attributes) on a per-shot basis.

Priority overrides simplify the management of customized
placement of objects and lights, whether to address specific
placement issues in the shot layout or to modify lighting on
a case by case basis.

Light Rigs vs Spawnables

Fortnite implemented both light rigs and spawnable lighting
solutions to light the sequences within the trailer. Both
approaches proved performant, but creating a light rig
provided a better sense of organization for light planning.
Ultimately, the best approach would be to construct a
dedicated light rig for overall sequence lighting, and then
supplement the rig with spawnable lights when required.

Distance Field Ambient Occlusion

To reduce overhead for real-time playback, the Fortnite
team pre-computed soft shadows for non-animated
environment objects.

To aid in the computation of soft shadows, Unreal Engine
can determine distance fields from mesh objects. A
distance field describes the surface of a mesh object as a

series of XYZ distances from an origin point, resulting in a
point cloud to represent the object. The lower the resolution
of the distance field, the lower the number of points
recorded and the “softer” the definition of the object.

Distance fields lend themselves well to calculation of soft
shadows. Producing soft shadows from hard surfaces
is computationally intensive, but shadows generated for
distance fields are naturally soft as they are cast on these
softer versions of objects.

Ideally, a distance field is computed with a resolution high
enough to represent the object but low enough to retain
softness and also keep computing time to a minimum. In
Unreal Engine, the resolution of a mesh’s distance field is
controlled by its volume texture resolution.

For the environment in the Fortnite trailer, Distance Field
Ambient Occlusion was routed into various objects’ material
settings to provide a sense of shadowing by non-shadow
casting and indirect lights. These soft shadows were pre-
computed, which reduced overhead for real-time playback.

For more information on distance fields and their uses, see
Mesh Distance Fields in the Unreal Engine documentation.

Figure 46: Original polygon mesh (left) and distance field representation (right)

41

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Effects &
Post Processing

42

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Effects and Post Processing
Traditional animation pipelines rely on complicated render
farms to calculate visual effects and post-processing
enhancements as separate render passes that must be
composited in a dedicated compositing program like After
Effects or Nuke. While the use of these kinds of programs
have their place, Unreal Engine eliminates a number
of these steps by providing those capabilities within
the engine.

For the trailer, the Fortnite team used Unreal Engine
tools FFT Bloom to enhance glows and light effects and
Cinematic Tonemapping for color correction.

The smoke-like storms and enemy deaths required special
attention. In Fortnite, enemies always emerge from the
storms themselves. A primary objective for the Fortnite
trailer was to reinforce the connection between the enemy
characters and the storms.

To help achieve that integration, real-time volumetric
rendering methods were used to keep all the FX live and
adjustable in Unreal Engine, rather than import them from
an offline package.

Enemy Deaths

The trailer required more than 25 unique husk (monster)
death effects. Due to Entertainment Software Rating Board
(ESRB) restrictions, the effects had to be non-violent. Epic
decided each monster would quickly dissipate into a cloud-
like material when it died, reducing perceived violence while
helping to bridge the story’s storm/monster connection.

While this type of effect can be externally generated and
rendered through simulation software, such simulations
would ordinarily be generated early in the pipeline and then
would have to be reworked and re-exported every time a
camera or animation was changed. Instead, Epic decided
to use a fully real-time fluid simulation in post processing,
again taking advantage of the non-linear workflow Unreal
Engine is designed to support. Cameras and animation
could be refined as much as the artistic process required
without the need to regenerate a simulation from an
external package.

Each death needed to be lit to match the current scene, and
also needed to respond to scene forces. By simulating the
effect in real time, the results were more changeable.

The enemy monsters were voxelized using a simple trick
of converting character skeletal meshes into “smoke

Figure 47: Monster emerging from the storm

Figure 48: Monster death from hammer swung in a circular trajectory

43

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

monsters” to seed the density of the volume textures. Mesh
motion vectors were also captured during voxelization and
added to the simulation during advection stages. Artists
used velocity with a combination of curl noise and normals
from the skeletal meshes.

To save on performance, the single-scattering method was
used to light the volumes. With single scattering, just the
light that hits the volume is reflected back. Multi-scattering,
which calculates the light bouncing within the volume, was
deemed too expensive to implement for a real-time solution.
However, the effect can be approximated by blurring the
results of single scattering.

By using a color instead of a scalar for the shadow density,
the light hitting a volume could be made to change color
with shadow depth, allowing a wider range of artistic
effects. This “extinction color” gave more stylized color
controls of the purple and pink smoke the monsters emitted
when killed.

Each sim was controlled via the Sequencer. Sims were
triggered one frame early to allow capture of motion vectors.
Afterwards, the mesh contribution (density and velocity)
could be keyframed. This allowed for very rapid iterations
when compared with the wait times incurred by traditional
offline rendered simulations.

Pressure iterations were run at half resolution as an
optimization. Simulations were done using a GPU-
accelerated Navier-Stokes-based fluid solver. The monster
characters themselves were the emitters, contributing their
densities and velocities to real-time simulations. These
contributions could then be controlled by tracks in the
Sequencer which made it easy for final tweaks to be made.

Blueprints were also created that could convert any sim
into a Flipbook from the specified camera. Flipbooks were
used as a fallback plan for any shots that could not afford
simulation— for example, if a large number of monsters
were being killed in a single shot.

In key shots, invisible meshes were used as emission
sources for art-directable motion and velocity. Volume
textures were stored as pseudo-volumes and laid out as

slices in a standard 2D texture.

The 3D simulations were rendered using a standard
raymarch shader.

Storms

The shapes of the storms were defined via procedural
distance field layers that were animated using 3D
Flowmaps, a type of animated texture in Unreal Engine. The
Flowmaps were hand-painted inside of virtual reality using
custom Blueprint tools.

Painting the clouds’ Flowmaps in VR was a more natural
experience than using a mouse or stylus. Clouds were also
animated to grow and spread by animating thresholds for
the Distance Field layers.

All volumetric storm clouds were rendered using a raymarch
shader similar to the one used for the enemy deaths, but
with 3D Flowmaps instead of full fluid simulations. To track
long, curly wisps of clouds without distortion, an iterative
process was used to generate the Flowmaps.

4 In Unreal Engine, a Flipbook is a series of 2D images
played back at a specified speed. Playing back a Flipbook
is faster than playing a fluid simulation in real time.

Figure 49: Storm shape in Fortnite trailer

44

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Shapes were a mix of procedural layers and hand sculpting
in real-time in a virtual reality environment. The velocities
used for the Flowmaps were also a mix between curl noise
and hand-sculpted velocities in VR. Procedural shapes
were used more for shots showing lots of growth, as
artists controlled the growth of the procedural shapes
parametrically over the life of a shot.

Volumetric Fog

Some shots called for cloud effects to evoke the feel
of the impending storm, but didn’t require the custom
shapes required by enemies and storms. For such shots,
the Fortnite team made use of Unreal Engine’s built-in
Volumetric Fog.

Because Volumetric Fog uses inverse-squared distribution
of voxels, detail farther away from the camera is lost. This
makes Volumetric Fog more suitable for overall scene
effects that are relatively soft, as opposed to specific
shapes. A custom per-object raymarch shader was used
to generate more custom effects and maintain detail in
the distance.

The fog in a level could receive shadows and was assigned
custom materials to add detail. The team used the same
pseudo-volume technique from the storms and sims to
pass the 3D texture data. Volumetric fog effects were
generated in real time during playback.

Unreal Engine allowed Epic to push the boundaries by
showing film-quality simulations are possible in real time.
Creating all these visual effects in real time allowed them to
achieve a quality and integration that would not have been
possible within a standard offline workflow.

Final Output

When all production was complete, the frames were
exported from Unreal Engine as uncompressed 1920x1080
PNG files and converted to QuickTime (MOV) using Adobe
Media Encoder and the PNG video codec. Adobe Premiere
CC was used for editing with audio.

The final output was delivered as Quicktime (MOV) encoded
with the PNG video codec.

45

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Product Data
& Information

46

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

Project Data & Information
Production Schedule

•	 Development start: August 2016
•	 Game asset enhancements start: Nov 2016
•	 Pre-production start: January 2017
•	 Production: Feb-Apr 2017
•	 Base sequence lighting start: January 2017
•	 Shot lighting start: March 2017
•	 Effects start: April 2017
•	 Final adjusted due date: May 2017

Team Composition
•	 Michael Clausen - Sr. Cinematic

Designer and Co-Director
•	 Gavin Moran - Creative Cinematic

Director and Co-Director
•	 Andrew Harris - Studio CG Supervisor
•	 Michael Balog - Director Animation Technology
•	 Ryan Brucks - Principal Technical Artist
•	 3 Senior Cinematic Artists
•	 Approximately 7 to 10 Unreal Engine

lighting, effects, and technical artists
•	 External Animation Team - Steamroller Studios, FL
•	 Editorial Team

Target Platform

PC Configuration:

•	 PC - i7 (7th Gen processor or higher)
•	 64 GB RAM
•	 SSD Hard Drive
•	 1080 GTX / 1080 Ti / P6000

47

Fortnite Trailer: Developing a Next Gen pipeline for a faster workflow

About this Document
Authors

Brian J. Pohl
Tim Brakensiek
Simone Lombardo

Contributors

Michael Clausen
Gavin Moran
Michael Balog
Brian Brecht
Andrew Harris
Ryan Brucks
Sebastien Miglio

Editor

Michele Bousquet

