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Figure 1. We present Neuralangelo, a framework for high-fidelity 3D surface reconstruction from RGB images using neural volume rendering, even without auxiliary data such as segmentation or depth. Shown in the figure is an extracted 3D mesh of a courthouse. 

Abstract

1. Introduction

Neural surface reconstruction has been shown to be pow-3D surface reconstruction aims to recover dense geomet-erful for recovering dense 3D surfaces via image-based neu-ric scene structures from multiple images observed at differ-arXiv:2306.03092v2  [cs.CV]  12 Jun 2023

ral rendering. However, current methods struggle to recover ent viewpoints [9]. The recovered surfaces provide structural detailed structures of real-world scenes. To address the information useful for many downstream applications, such issue, we present Neuralangelo, which combines the repas 3D asset generation for augmented/virtual/mixed real-resentation power of multi-resolution 3D hash grids with ity or environment mapping for autonomous navigation of neural surface rendering. Two key ingredients enable our ap-robotics. Photogrammetric surface reconstruction using a proach: (1) numerical gradients for computing higher-order monocular RGB camera is of particular interest, as it equips derivatives as a smoothing operation and (2) coarse-to-fine users with the capability of casually creating digital twins of optimization on the hash grids controlling different levels of the real world using ubiquitous mobile devices. 

details. Even without auxiliary inputs such as depth, Neu-Classically, multi-view stereo algorithms [6, 16, 33, 39]

ralangelo can effectively recover dense 3D surface structures had been the method of choice for sparse 3D reconstruc-from multi-view images with fidelity significantly surpass-tion. An inherent drawback of these algorithms, however, is ing previous methods, enabling detailed large-scale scene their inability to handle ambiguous observations, e.g. regions reconstruction from RGB video captures. 

with large areas of homogeneous colors, repetitive texture 1

patterns, or strong color variations. This would result in 2. Related work

inaccurate reconstructions with noisy or missing surfaces. 

Recently, neural surface reconstruction methods [41, 47, 48]

Multi-view surface reconstruction. Early image-based pho-have shown great potential in addressing these limitations. 

togrammetry techniques use a volumetric occupancy grid to This new class of methods uses coordinate-based multi-layer represent the scene [4, 16, 17, 33, 36]. Each voxel is visited perceptrons (MLPs) to represent the scene as an implicit and marked occupied if strict color constancy between the function, such as occupancy fields [28] or signed distance corresponding projected image pixels is satisfied. The pho-functions (SDF) [41, 47, 48]. Leveraging the inherent con-tometric consistency assumption typically fails due to auto-tinuity of MLPs and neural volume rendering [25], these exposure or non-Lambertian materials, which are ubiquitous techniques allow the optimized surfaces to meaningfully in-in the real world. Relaxing such color constancy constraints terpolate between spatial locations, resulting in smooth and across views is important for realistic 3D reconstruction. 

complete surface representations. 

Follow-up methods typically start with 3D point clouds Despite the superiority of neural surface reconstruction from multi-view stereo techniques [6, 7, 32, 39] and then per-methods over classical approaches, the recovered fidelity form dense surface reconstruction [13, 14]. Reliance on the of current methods does not scale well with the capacity of quality of the generated point clouds often leads to missing MLPs. Recently, Müller et al. [26] proposed a new scalable or noisy surfaces. Recent learning-based approaches aug-representation, referred to as Instant NGP (Neural Graphics ment the point cloud generation process with learned image Primitives). Instant NGP introduces a hybrid 3D grid struc-features and cost volume construction [2, 10, 46]. However, ture with a multi-resolution hash encoding and a lightweight these approaches are inherently limited by the resolution of MLP that is more expressive with a memory footprint log-the cost volume and fail to recover geometric details. 

linear to the resolution. The proposed hybrid representation Neural Radiance Fields (NeRF). NeRF [25] achieves re-greatly increases the representation power of neural fields markable photorealistic view synthesis with view-dependent and has achieved great success at representing very fine-effects. NeRF encodes 3D scenes with an MLP mapping 3D

grained details for a wide variety of tasks, such as object spatial locations to color and volume density. These predic-shape representation and novel view synthesis problems. 

tions are composited into pixel colors using neural volume In this paper, we propose Neuralangelo for high-fidelity rendering. A problem of NeRF and its variants [1, 34, 49, 53], 

surface reconstruction (Fig. 1). Neuralangelo adopts In-however, is the question of how an isosurface of the vol-stant NGP as a neural SDF representation of the underlying ume density could be defined to represent the underlying 3D

3D scene, optimized from multi-view image observations geometry. Current practice often relies on heuristic thresh-via neural surface rendering [41]. We present two findings olding on the density values; due to insufficient constraints central to fully unlocking the potentials of multi-resolution on the level sets, however, such surfaces are often noisy hash encodings. First, using numerical gradients to compute and may not model the scene structures accurately [41, 47]. 

higher-order derivatives, such as surface normals for the Therefore, more direct modeling of surfaces is preferred for eikonal regularization [8, 12, 20, 48], is critical to stabilizing photogrammetric surface reconstruction problems. 

the optimization. Second, a progressive optimization sched-Neural surface reconstruction. For scene representations ule plays an important role in recovering the structures at with better-defined 3D surfaces, implicit functions such as different levels of details. We combine these two key ingredi-occupancy grids [27, 28] or SDFs [48] are preferred over ents and, via extensive experiments on standard benchmarks simple volume density fields. To integrate with neural vol-and real-world scenes, demonstrate significant improvements ume rendering [25], different techniques [41, 47] have been over image-based neural surface reconstruction methods in proposed to reparametrize the underlying representations both reconstruction accuracy and view synthesis quality. 

back to volume density. These designs of neural implicit In summary, we present the following contributions:

functions enable more accurate surface prediction with view

• We present the Neuralangelo framework to naturally synthesis capabilities of unsacrificed quality [48]. 

incorporate the representation power of multi-resolution Follow-up works extend the above approaches to real-hash encoding [26] into neural SDF representations. 

time at the cost of surface fidelity [18, 42], while others [3, 5, 50] use auxiliary information to enhance the re-

• We present two simple techniques to improve the quality construction results. Notably, NeuralWarp [3] uses patch of hash-encoded surface reconstruction: higher-order warping given co-visibility information from structure-from-derivatives with numerical gradients and coarse-to-fine motion (Sf M) to guide surface optimization, but the patch-optimization with a progressive level of details. 

wise planar assumption fails to capture highly-varying sur-

• We empirically demonstrate the effectiveness of Neu-faces [3]. Other methods [5, 51] utilize sparse point clouds ralangelo on various datasets, showing significant im-from Sf M to supervise the SDF, but their performances provements over previous methods. 

are upper-bounded by the quality of the point clouds, as 2

with classical approaches [51]. The use of depth and seg-rendering. Given a 3D point xi and SDF value f (xi), the mentation as auxiliary data has also been explored with corresponding opacity value αi used in Eq. 1 is computed as unconstrained image collections [35] or using scene representations with hash encodings [50, 55]. In contrast, our Φs(f (xi)) − Φs(f (xi+1))

αi = max

, 0

, 

(3)

work Neuralangelo builds upon hash encodings [26] to re-Φs(f (xi))

cover surfaces but without the need for auxiliary inputs used where Φs is the sigmoid function. In this work, we use the in prior work [3, 5, 35, 50, 51]. Concurrent work [43] also same SDF-based volume rendering formulation [41]. 

proposes coarse-to-fine optimization for improved surface Multi-resolution hash encoding. Recently, multi-resolution details, where a displacement network corrects the shape hash encoding proposed by Müller et al. [26] has shown predicted by a coarse network. In contrast, we use hierarchi-great scalability for neural scene representations, generating cal hash grids and control the level of details based on our fine-grained details for tasks such as novel view synthesis. 

analysis of higher-order derivatives. 

In Neuralangelo, we adopt the representation power of hash encoding to recover high-fidelity surfaces. 

3. Approach

The hash encoding uses multi-resolution grids, with each Neuralangelo reconstructs dense structures of the scene grid cell corner mapped to a hash entry. Each hash entry from multi-view images. Neuralangelo samples 3D locations stores the encoding feature. Let {V1, ..., VL} be the set of dif-along camera view directions and uses a multi-resolution ferent spatial grid resolutions. Given an input position xi, we hash encoding to encode the positions. The encoded features map it to the corresponding position at each grid resolution c

are input to an SDF MLP and a color MLP to composite Vl as xi,l = xi · Vl. The feature vector γl(xi,l) ∈ R given images using SDF-based volume rendering. 

resolution Vl is obtained via trilinear interpolation of hash entries at the grid cell corners. The encoding features across 3.1. Preliminaries

all spatial resolutions are concatenated together, forming a cL

Neural volume rendering. NeRF [25] represents a 3D scene γ(xi) ∈ R

feature vector:

as volume density and color fields. Given a posed camera γ(xi) = γ1(xi,1), ..., γL(xi,L). 

(4)

and a ray direction, the volume rendering scheme integrates the color radiance of sampled points along the ray. The i-th The encoded features are then passed to a shallow MLP. 

sampled 3D position x

One alternative to hash encoding is sparse voxel structures i is at a distance ti from the camera

center. The volume density σ

[34, 37, 44, 49], where each grid corner is uniquely defined i and color ci of each sampled

point are predicted using a coordinate MLP. The rendered without collision. However, volumetric feature grids require color of a given pixel is approximated as the Riemann sum: hierarchical spatial decomposition (e.g. octrees) to make the parameter count tractable; otherwise, the memory would N

grow cubically with spatial resolution. Given such hierarchy, X

ˆ

c(o, d) =

wici, 

where wi = Tiαi. 

(1)

finer voxel resolutions by design cannot recover surfaces i=1

that are misrepresented by the coarser resolutions [37]. Hash Here, α

encoding instead assumes no spatial hierarchy and resolves i = 1 − exp(−σiδi) is the opacity of the i-th ray

segment, δ

collision automatically based on gradient averaging [26]. 

i = ti+1 − ti is the distance between adjacent

samples, and Ti = Πi−1 (1 − α

j=1

j ) is the accumulated trans-

3.2. Numerical Gradient Computation

mittance, indicating the fraction of light that reaches the camera. To supervise the network, a color loss is used be-We show in this section that the analytical gradient w.r.t. 

tween input images c and rendered images ˆ

c:

position of hash encoding suffers from localities. Therefore, optimization updates only propagate to local hash grids, LRGB = ∥ˆc − c∥1 . 

(2)

lacking non-local smoothness. We propose a simple fix to such a locality problem by using numerical gradients. An However, surfaces are not clearly defined using such density overview is shown in Fig. 2. 

formulation. Extracting surfaces from density-based repre-A special property of SDF is its differentiability with a sentation often leads to noisy and unrealistic results [41, 47]. 

gradient of the unit norm. The gradient of SDF satisfies the Volume rendering of SDF. One of the most common surface eikonal equation ∥∇f (x)∥2 = 1 (almost everywhere). To representations is SDF. The surface S of an SDF can be enforce the optimized neural representation to be a valid implicitly represented by its zero-level set, i.e., S = {x ∈

SDF, the eikonal loss [8] is typically imposed on the SDF

3

R |f (x) = 0}, where f (x) is the SDF value. In the context predictions:

of neural SDFs, Wang et al. [41] proposed to convert volume N

density predictions in NeRF to SDF representations with a 1 X

Leik =

(∥∇f (xi)∥2 − 1)2, 

(5)

logistic function to allow optimization with neural volume N i=1

3

𝐱

𝐱− 𝛜

𝐱

𝐱 + 𝛜

would participate in the surface normal computation. Back-propagating through the surface normals thus allows hash entries of multiple grids to receive optimization updates si-𝑓 𝐱− 𝛜

𝑓 𝐱+ 𝛜

multaneously. Intuitively, numerical gradients with carefully chosen step sizes can be interpreted as a smoothing opera-

∇𝑓 𝐱

∇𝑓 𝐱

Analytical gradient

Numerical gradient

tion on the analytical gradient expression. An alternative of normal supervision is a teacher-student curriculum [40, 54], 

Forward pass

Back-propagation

where the predicted noisy normals are driven towards MLP

outputs to exploit the smoothness of MLPs. However, ana-Figure 2. Using numerical gradients for higher-order derivatives lytical gradients from such teacher-student losses still only distributes the back-propagation updates beyond the local hash grid back-propagate to local grid cells for hash encoding. In con-cell, thus becoming a smoothed version of analytical gradients. 

trast, numerical gradients solve the locality issue without the need of additional networks. 

where N is the total number of sampled points. To allow for To compute the surface normals using the numerical gra-end-to-end optimization, a double backward operation on dient, additional SDF samples are needed. Given a sampled the SDF prediction f (x) is required. 

point xi = (xi, yi, zi), we additionally sample two points The de facto method for computing surface normals of along each axis of the canonical coordinate around xi within SDFs ∇f (x) is to use analytical gradients [41, 45, 47, 48]. 

a vicinity of a step size of ϵ. For example, the x-component Analytical gradients of hash encoding w.r.t. position, how-of the surface normal can be found as

ever, are not continuous across space under trilinear interpo-f (γ(xi + ϵx)) − f (γ(xi − ϵx))

lation. To find the sampling location in a voxel grid, each

∇xf (xi) =

, 

(8)

2ϵ

3D point xi would first be scaled by the grid resolution Vl, written as x

where ϵ

i,l = xi · Vl. Let the coefficient for (tri-)linear

x = [ϵ, 0, 0]. In total, six additional SDF samples are interpolation be β = x

required for numerical surface normal computation. 

i,l − ⌊xi,l⌋. The resulting feature

vectors are

3.3. Progressive Levels of Details

γl(xi,l) = γl(⌊xi,l⌋) · (1 − β) + γl(⌈xi,l⌉) · β, 

(6)

Coarse-to-fine optimization can better shape the loss land-where the rounded position ⌊x

scape to avoid falling into false local minima. Such a strati,l⌋, ⌈xi,l⌉ correspond to the

local grid cell corners. We note that rounding operations ⌊·⌋

egy has found many applications in computer vision, such and ⌈·⌉ are non-differentiable. As a result, the derivative of as image-based registration [19, 23, 29]. Neuralangelo also hash encoding w.r.t. the position can be obtained as adopts a coarse-to-fine optimization scheme to reconstruct the surfaces with progressive levels of details. Using nu-

∂γl(xi,l)

∂β

∂β

= γ

merical gradients for the higher-order derivatives naturally l(⌊xi,l⌋) · (−

) + γl(⌈xi,l⌉) ·

∂xi

∂xi

∂xi

enables Neuralangelo to perform coarse-to-fine optimization

= γl(⌊xi,l⌋) · (−Vl) + γl(⌈xi,l⌉) · Vl . 

(7)

from two perspectives. 

The derivative of hash encoding is local, i.e., when x Step size ϵ. As previously discussed, numerical gradients i

moves across grid cell borders, the corresponding hash en-can be interpreted as a smoothing operation where the step tries will be different. Therefore, the eikonal loss defined size ϵ controls the resolution and the amount of recovered in Eq. 5 only back-propagates to the locally sampled hash details. Imposing Leik with a larger ϵ for numerical surface entries, i.e. γ

normal computation ensures the surface normal is consistent l(⌊xi,l⌋) and γl(⌈xi,l⌉). When continuous surfaces (e.g. a flat wall) span multiple grid cells, these grid cells at a larger scale, thus producing consistent and continuous should produce coherent surface normals without sudden surfaces. On the other hand, imposing Leik with a smaller transitions. To ensure consistency in surface representation, ϵ affects a smaller region and avoids smoothing details. In joint optimization of these grid cells is desirable. However, practice, we initialize the step size ϵ to the coarsest hash grid the analytical gradient is limited to local grid cells, unless all size and exponentially decrease it matching different hash corresponding grid cells happen to be sampled and optimized grid sizes throughout the optimization process. 

simultaneously. Such sampling is not always guaranteed. 

Hash grid resolution V . If all hash grids are activated from To overcome the locality of the analytical gradient of the start of the optimization, to capture geometric details, fine hash encoding, we propose to compute the surface normals hash grids must first “unlearn” from the coarse optimization using numerical gradients. If the step size of the numeri-with large step size ϵ and “relearn” with a smaller ϵ. If such cal gradient is smaller than the grid size of hash encoding, a process is unsuccessful due to converged optimization, the numerical gradient would be equivalent to the analyti-geometric details would be lost. Therefore, we only enable cal gradient; otherwise, hash entries of multiple grid cells an initial set of coarse hash grids and progressively activate 4
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Figure 3. Qualitative comparison on the DTU benchmark [11]. Neuralangelo produces more accurate and higher-fidelity surfaces. 

finer hash grids throughout optimization when ϵ decreases to of the Tanks and Temples dataset [15], including large-scale their spatial size. The relearning process can thus be avoided indoor/outdoor scenes. Each scene contains 263 to 1107

to better capture the details. In practice, we also apply weight images captured using a hand-held monocular RGB camera. 

decay over all parameters to avoid single-resolution features The ground truth is obtained using a LiDAR sensor. 

dominating the final results. 

Implementation details. Our hash encoding resolution 3.4. Optimization

spans 25 to 211 with 16 levels. Each hash entry has a channel size of 8. The maximum number of hash entries of each To further encourage the smoothness of the reconstructed resolution is 222. We activate 4 and 8 hash resolutions at the surfaces, we impose a prior by regularizing the mean curva-beginning of optimization for DTU dataset and Tanks and ture of SDF. The mean curvature is computed from discrete Temples respectively, due to differences in scene scales. We Laplacian similar to the surface normal computation, other-enable a new hash resolution every 5000 iterations when the wise, the second-order analytical gradients of hash encoding step size ϵ equals its grid cell size. For all experiments, we are zero everywhere when using trilinear interpolation. The do not utilize auxiliary data such as segmentation or depth curvature loss Lcurv is defined as:

during the optimization process. 

N

1

Evaluation criteria. We report Chamfer distance and F1

X

L



curv =

∇2 f (xi)

. 

(9)

N

score for surface evaluation [11, 15]. We use peak signal-to-i=1

noise ratio (PSNR) to report image synthesis qualities. 

We note that the samples used for the surface normal compu-4.1. DTU Benchmark

tation in Eq. 8 are sufficient for curvature computation. 

The total loss is defined as the weighted sum of losses: We show qualitative results in Fig. 3 and quantitative results in Table 1. On average, Neuralangelo achieves the L = LRGB + weikLeik + wcurvLcurv . 

(10)

lowest Chamfer distance and the highest PSNR, even without All network parameters, including MLPs and hash encoding, using auxiliary inputs. The result suggests that Neuralangelo are trained jointly end-to-end. 

is more generally applicable than prior work when recovering surfaces and synthesizing images, despite not performing 4. Experiments

best in every individual scene. 

We further ablate Neuralangelo against the following Datasets. Following prior work, we conduct experiments on conditions: 1) AG: analytical gradients, 2) AG+P: analytical 15 object-centric scenes of the DTU dataset [11]. Each scene gradients and progressive activating hash resolutions, 3) NG: has 49 or 64 images captured by a robot-held monocular numerical gradients with varying ϵ. Fig. 4 shows the results RGB camera. The ground truth is obtained from a structured-qualitatively. AG produces noisy surfaces, even with hash light scanner. We further conduct experiments on 6 scenes resolutions progressively activated (AG+P). NG improves 5
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Figure 4. Qualitative comparison of different coarse-to-fine optimization scheme. When using the analytical gradient (AG and AG+P), coarse surfaces often contain artifacts. While using numerical gradients (NG) leads to a better coarse shape, details are also smoothed. Our solution (NG+P) produces both smooth surfaces and fine details. 
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NeRF [25]

1.90

1.60

1.85

0.58

2.28

1.27

1.47

1.67

2.05

1.07

0.88

2.53

1.06

1.15

0.96

1.49

↓

VolSDF [47]

1.14

1.26

0.81

0.49

1.25

0.70

0.72

1.29

1.18

0.70

0.66

1.08

0.42

0.61

0.55

0.86

NeuS [41]

1.00

1.37

0.93

0.43

1.10

0.65

0.57

1.48

1.09

0.83

0.52

1.20

0.35

0.49

0.54

0.84

(mm)

HF-NeuS [43]

0.76

1.32

0.70

0.39

1.06

0.63

0.63

1.15

1.12

0.80

0.52

1.22

0.33

0.49

0.50

0.77

RegSDF [51] †

0.60

1.41

0.64

0.43

1.34

0.62

0.60

0.90

0.92

1.02

0.60

0.59

0.30

0.41

0.39

0.72

NeuralWarp [3] †

0.49

0.71

0.38
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0.66

0.74

0.41

0.63
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0.68
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0.67

1.04

0.84

0.39

1.43

1.23

1.11

1.24

1.54

0.85

0.50

1.01

0.37

0.51

0.44

0.88
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0.46

0.34

1.19

0.70

0.79

1.19

1.37

0.69

0.49

0.93

0.33

0.44

0.44

0.73

Chamfer

NG

0.48

0.81

0.43

0.35

0.89

0.71

0.61

1.26

1.06

0.74

0.47

0.79

0.33

0.45

0.43

0.65

NG+P (Ours)

0.37

0.72

0.35

0.35

0.87

0.54

0.53

1.29

0.97

0.73

0.47

0.74

0.32

0.41

0.43

0.61

RegSDF [51] †

24.78

23.06

23.47

22.21

28.57

25.53

21.81

28.89

26.81

27.91

24.71

25.13

26.84

21.67

28.25

25.31

NeuS [41]

26.62

23.64

26.43

25.59

30.61

32.83

29.24

33.71

26.85

31.97

32.18

28.92

28.41

35.00

34.81

29.79

VolSDF [47]

26.28

25.61

26.55

26.76

31.57

31.50

29.38

33.23

28.03

32.13

33.16

31.49

30.33

34.90

34.75

30.38

↑

NeRF [25]

26.24

25.74

26.79

27.57

31.96

31.50

29.58

32.78

28.35

32.08

33.49

31.54

31.00

35.59

35.51

30.65

AG

29.97

24.98

23.11

30.27

30.60

31.27

29.27

34.22

27.47

33.09

33.85

29.98

29.41

35.69

35.11

30.55

PSNR

AG+P

30.12

24.63

29.59

30.29

31.60

32.04

29.85

34.19

27.82

33.23

33.95

29.15

29.44

35.99

35.67

31.17

NG

30.34

25.14

30.20

30.79

31.72

31.86

29.81

34.36

28.01

33.45

34.38

30.39

29.88

36.02

35.74

31.47

NG+P (Ours)

30.64

27.78

32.70

34.18

35.15

35.89

31.47

36.82

30.13

35.92

36.61

32.60

31.20

38.41

38.05

33.84

Table 1. Quantitative results on DTU dataset [11]. Neuralangelo achieves the best reconstruction accuracy and image synthesis quality. 

Best result. Second best result. † Requires 3D points from Sf M. Best viewed in color. 

the smoothness of the surface, sacrificing details. Our setup scheme following VolSDF [47]. The additional surfaces pre-

(NG+P) produces both smooth surfaces and fine details. 

dicted for backgrounds are counted as outliers and worsen F1 scores significantly. We instead follow NeuS [41] and 4.2. Tanks and Temples

use an additional network [53] to model the background. 

Similar to the DTU results, using the analytical gradient As no public result is available for Tanks and Temples, produces noisy surfaces and thus leads to a low F1 score. 

we train NeuS [41] and NeuralWarp [3] following our setup. 

We further note that the reconstruction of Courthouse shown We also report classical multi-view stereo results using in Figs. 1 and 5 are the same building of different sides, COLMAP [31]. As COLMAP and NeuralWarp do not sup-demonstrating the capability of Neuralangelo for large-scale port view synthesis, we only report PSNR from NeuS. Re-granular reconstruction. 

sults are summarized in Fig. 5 and Table 2. 

Neuralangelo achieves the highest average PSNR and

4.3. Level of Details

performs best in terms of F1 score. Comparing against NeuS [41], we can recover high-fidelity surfaces with intriAs Neuralangelo progressively optimizes the hash fea-cate details. We find that the dense surfaces generated from tures of increasing resolution, we inspect the progressive COLMAP are sensitive to outliers in the sparse point cloud. 

level of details similar to NGLOD [37]. We show a qualita-We also find that NeuralWarp often predicts surfaces for the tive visualization in Fig. 6. While some surfaces are entirely sky and backgrounds potentially due to their color rendering missed by coarse levels, for example, the tree, table, and 6
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Figure 5. Qualitative comparison on Tanks and Temples dataset [15]. Neuralangelo captures the scene details better compared to other baseline approaches, while baseline approaches have missing or noisy surfaces. 

bike rack, these structures are recovered by finer resolutions Thus, only relying on the continuity of local cells of coarse successfully. The ability to recover missing surfaces demon-resolutions is not sufficient to reconstruct large continuous strates the advantages of our spatial hierarchy-free design. 

surfaces. The result motivates the use of the numerical Moreover, we note that flat surfaces are predicted at suf-gradients for the higher-order derivatives, such that back-ficiently high resolutions (around Level 8 in this example). 

propagation is beyond local grid cells. 
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Figure 6. Results at different hash resolutions. While some structures, such as the tree, table, and bike rack, are missed at coarse resolutions (Level 4). Finer resolutions can progressively recover these missing surfaces. Flat continuous surfaces also require sufficiently fine resolutions to predict (Level 8). The result motivates the non-local updates when using numerical gradients for higher-order derivatives. 

F1 Score ↑

PSNR ↑

NeuralWarp

COLMAP

NeuS

NG+P

NeuS

NG+P

[3]

[31]

[41]

AG

AG+P

NG

(Ours)

[41]

AG

AG+P

NG

(Ours)

Barn

0.22

0.55

0.29

0.22

0.31

0.63

0.70

26.36

26.91

26.69

26.14

28.57

Caterpillar

0.18

0.01

0.29

0.23

0.24

0.30

0.36

25.21

26.04

25.12

26.16

27.81

Courthouse

0.08

0.11

0.17

0.08

0.09

0.24

0.28

23.55

25.43

25.63

25.06

27.23

Ignatius

0.02

0.22

0.83

0.72

0.73

0.85

0.89

23.27

22.69

22.73

23.78

23.67

Meetingroom

0.08

0.19

0.24

0.04

0.05

0.27

0.32

25.38

28.13

28.05

27.44

30.70

Truck

0.35

0.19

0.45

0.33

0.37

0.44

0.48

23.71

23.89

23.95

22.99

25.43

Mean

0.15

0.21

0.38

0.27

0.30

0.45

0.50

24.58

25.51

25.36

25.26

27.24

Table 2. Quantitative results on Tanks and Temples dataset [15]. Neuralangelo achieves the best surface reconstruction quality and performs best on average in terms of image synthesis. Best result. Second best result. Best viewed in color. 

Topology warmup. We follow prior work and initialize the SDF approximately as a sphere [48]. With an initial spherical shape, using Lcurv also makes concave shapes diffi-cult to form because Lcurv preserves topology by preventing singularities in curvature. Thus, instead of applying Lcurv from the beginning of the optimization process, we use a (a)

Input

w/o

short warmup period that linearly increases the curvature ℒ

w/ 

curv

ℒcurv

loss strength. We find this strategy particularly helpful for concave regions, as shown in Fig. 7(b). 

5. Conclusion

We introduce Neuralangelo, an approach for photogrammetric neural surface reconstruction. The findings of Neu-

(b)

Input

w/o topology warmup

w/ topology warmup

ralangelo are simple yet effective: using numerical gradients for higher-order derivatives and a coarse-to-fine optimization Figure 7. Ablation results. (a) Surface smoothness improves strategy. Neuralangelo unlocks the representation power of with curvature regularization Lcurv. (b) Concave shapes are better multi-resolution hash encoding for neural surface reconstruc-formed with topology warmup. 

tion modeled as SDF. We show that Neuralangelo effectively recovers dense scene structures of both object-centric captures and large-scale indoor/outdoor scenes with extremely 4.4. Ablations

high fidelity, enabling detailed large-scale scene reconstruction from RGB videos. Our method currently samples pixels Curvature regularization. We ablate the necessity of curva-from images randomly without tracking their statistics and ture regularization in Neuralangelo and compare the results errors. Therefore, we use long training iterations to reduce in Fig. 7(a). Intuitively, L

the stochastics and ensure sufficient sampling of details. It is curv acts as a smoothness prior by

minimizing surface curvatures. Without L

our future work to explore a more efficient sampling strategy curv, we find that

the surfaces tend to have undesirable sharp transitions. By to accelerate the training process. 

using Lcurv, the surface noises are removed. 
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A. Additional Hyper-parameters

Truck

0.45

0.45

0.48

Mean

0.38

0.35

0.50

Following prior work [41,47,48], we assume the region of interest is inside a unit sphere. The total number of training Table 3. Additional quantitative results on Tanks and Temples iterations is 500k. When a given hash resolution is not active, dataset [15]. Neuralangelo achieves the best surface reconstruction we set the feature vectors to zero. We use a learning rate of quality and performs best on average in terms of image synthesis. 

1 × 10−3 with a linear warmup of 5k iterations. We decay Best result. Second best result. Best viewed in color. 

the learning rate by a factor of 10 at 300k and 400k. We use AdamW [22] optimizer with a weight decay of 10−2. 

We set w

large-scale in-the-wild scenes, the COLMAP point clouds eik = 0.1. The curvature regularization strength

w

are often noisy, even after filtering. Using the noisy point curv linearly warms up 5 × 10−4 following the schedule of learning rate and decays by the same spacing factor between clouds may degrade the results, similarly observed in [51]. 

hash resolutions every time ϵ decreases. The SDF MLP

As evidence, we benchmark Geo-NeuS [5] on Tanks and has one layer, while the color MLP has four layers. For Temples (Table 3). We find that Geo-NeuS performs worse the DTU benchmark, we follow prior work [41, 47, 48] and than NeuS and Neuralangelo in most scenes. 

use a batch size of 1. For the Tanks and Temples dataset, RGB image synthesis. Due to similarities between adja-we use a batch size of 16. We use the marching cubes cent video frames, we report PSNR by sub-sampling 10

algorithm [21] to convert predicted SDF to triangular meshes. 

times input video temporally and evaluating the sub-sampled The marching cubes resolution is set to 512 for the DTU

video frames. Qualitative comparison of Neuralangelo and benchmark following prior work [3, 41, 47, 48] and 2048 for prior work NeuS [41] is shown in Fig 9. Neuralangelo the Tanks and Temples dataset. 

produces high-fidelity renderings compared to NeuS [41], 

with details on the buildings and objects recovered. Neither B. Additional In-the-wild Results

COLMAP [31] nor NeuralWarp [3] supports view synthesis or accounts for view-dependent effects. Thus, we only re-We present additional in-the-wild results collected at the port the F1 score of the reconstructed surfaces for these two NVIDIA HQ Park and Johns Hopkins University in Figure 8. 

approaches. 

The videos are captured by a consumer drone. The camera intrinsics and poses are recovered using COLMAP [31]. To D. Additional DTU Results

define the bounding regions, we have developed an open-sourced Blender add-on1 to allow users interactively se-We present additional results on the DTU benchmark [11]

lect regions of interest using the sparse point cloud from in this section. 

COLMAP. The surfaces are reconstructed using the same Surface reconstruction. We visualize the reconstructed setup and hyperparameters as the Tanks and Temples dataset. 

surfaces of additional scenes of the DTU benchmark. Quali-Neuralangelo successfully reconstructs complex geometries tative comparison with NeuS [41] and NeuralWarp [3] are and scene details, such as the buildings, sculptures, trees, um-shown in Fig. 10. 

brellas, walkways, and etc. Using the same setup as Tanks Compared to prior work, Neuralangelo not only can recon-and Temples also suggests that Neuralangelo is generalizable struct smoother surfaces such as in Scan 40, 63, and 69 but with the proposed set of hyper-parameters. 

C. Additional Tanks and Temples Results

Chamfer distance (mm) ↓

IDR masks

Our masks

We present additional results on the Tanks and Temples dataset [15] in this section. 

NeuS [41]

1.48

0.99

NeuralWarp [3]

1.20

0.73

Surface reconstruction. Concurrent with our work, Geo-Ours

1.29

0.76

NeuS [5] uses the sparse point clouds from COLMAP [31]

to improve the surface quality. However, we find that in Table 4. Quantitative results on Scan 83 of the DTU dataset [11]

1

using object masks provided by IDR [48] and annotated by us. 

https://github.com/mli0603/BlenderNeuralangelo
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Figure 8. Reconstruction results of NVIDIA HQ Park and Johns Hopkins University. Videos are captured by a consumer drone. 

also produces sharper details such as in Scan 63 and 118 (e.g. 

has mostly diffuse materials and relatively simple textures. 

the details of the pumpkin vine and the statue face). While Moreover, we find that Neuralangelo fails to recover details Neuralangelo performs better on average across scenes, we compared to NeuS [41] when the scene is highly reflective, note that the qualitative result of Neuralangelo does not im-such as Scan 69. Neuralangelo misses the button structures prove significantly in Scan 122, where the object of interest and eyes. Such a finding agrees with the results of Instant 10
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Figure 9. Qualitative comparison of image rendering on the Tanks and Temples dataset [15]. Compared to NeuS [41], Neuralangelo generates high-quality renderings with texture details on the buildings and objects. 
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Scan 40

Scan 63
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Input
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Figure 10. Qualitative comparison on additional scenes of the DTU benchmark [11]. Neuralangelo can produce both smooth surfaces and detailed structures compared to prior work, despite limited improvement in simply textured and highly reflective objects. 
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Scan 83
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Figure 11. Qualitative comparison of RGB image synthesis on the DTU benchmark [11]. Compared to NeuS [41], Neuralangelo generates high-fidelity renderings with minute details. 
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NGP [26], where NeRF using Fourier frequency encoding analytical gradients after the optimization finishes. At the and deep MLP performs favorably against multi-resolution end of the optimization, the step size ϵ has decreased suf-hash encoding for highly reflective surfaces. Future work ficiently small to the grid size of the finest hash resolution. 

on improving the robustness of Neuralangelo in reflective Using numerical gradients is nearly identical to using an-scenes, a drawback inherited from hash encoding, can further alytical gradients. Fig. 15 shows that the surface normals generalize the application of Neuralangelo. 

computed from both numerical and analytical gradients are RGB image synthesis. In the paper, we report the PSNR re-indeed qualitatively similar, with negligible errors scattered sult of Neuralangelo to quantify the image synthesis quality. 

across the object. 

Due to the simplicity of the background, we only evaluate Color network. By default, we follow prior work [41, 48]

the PSNR of the foreground objects given the object masks. 

and predict color conditioned on view direction, surface nor-We visualize the rendered images in Fig. 11. We only choose mal, point location, and features from the SDF MLP. We NeuS [41] as our baseline as NeuralWarp [3] does not gener-use spherical harmonics following [49] to encode view di-ate rendered images. 

rection as it provides meaningful interpolation in the angular Fig. 11 shows that Neuralangelo successfully renders domain. When the data is captured with exposure varia-the detailed textures while NeuS produces overly smoothed tion in the wild, such as the Tanks and Temples dataset, images. The results suggest that Neuralangelo is able to we further add per-image appearance encoding following produce high-fidelity renderings and capture details better. 

NeRF-W [24]. 

DTU foreground mask. The foreground object masks are We have also implemented a more explicit color modeling used to remove the background for proper evaluation [3, 28, 

process. The color network is shown in Fig. 16, attempting

41, 48, 52] on the DTU benchmark. We follow the evaluation to better disentangle color-shape ambiguities. However, we protocol of NeuralWarp [3] and dilate the object masks by do not observe improvements in surface qualities using such 12 pixels. In all prior work, the foreground object masks a decomposition design. The intrinsic decomposed color net-used are annotated and provided by the authors of IDR [48]. 

work contains two branches – albedo and shading branches. 

3

However, we find that the provided masks are imperfect in The final rendered image C ∈ R is the sum of the albedo Scan 83. Fig. 12 shows that part of the object is annotated as image Ca and shading image Cs:

background. The masks provided by IDR also only include the foreground objects while the ground truth point clouds C = Φ(Ca + Cs), 

(11)

include the brick holding the objects. Thus, we manually annotate Scan 83 and report the updated results in Table 4 for where Φ is the Sigmoid function to normalize the predictions additional comparison. We note that fixing the object masks into the range of 0 to 1. 

3

for Scan 83 leads to improved results across all methods. 

The albedo branch predicts RGB values Ca ∈ R that

are view-invariant. It receives point locations and features E. Additional Ablations

from the SDF MLP as input. On the other hand, the shading branch predicts gray values Cs ∈ R that is view dependent We conduct additional ablations and summarize the re-to capture reflection, varying shadow, and exposure changes. 

sults in this section. 

We opt for the single channel design for the shading branch Color network. For the Tanks and Temples dataset, we add as specular highlights, exposure variations, and moving shad-per-image latent embedding to the color network following ows are often intensity changes [30]. The single-channel NeRF-W [24] to model the exposure variation across frames. 

gray color design also encourages the albedo branch to learn Qualitative results are shown in Fig. 13. After introducing the view-invariant color better as the shading branch is lim-the per-image embedding, the floating objects used to explain ited in its capacity. Other than the point locations and SDF

exposure variation have been greatly reduced. 

MLP features, the shading branch is additionally conditioned on reflection direction and view direction following RefN-Curvature regularization strength. The curvature regular-eRF [40] to encourage better shape recovery. We use two ization adds a smoothness prior to the optimization. As the hidden layers for the albedo branch and two hidden layers step size ϵ decreases and finer hash grids are activated, finer for the diffuse branch to make a fair comparison with the details may be smoothed if the curvature regularization is too default color network proposed by IDR [48]. 

strong. To avoid loss of details, we scale down the curvature We find that with the decomposed color network, the

regularization strength by the spacing factor between hash shading branch indeed successfully explains view-dependent resolutions each time the step size ϵ decreases. Details are effects (Fig. 16). However, flat surfaces tend to be carved better preserved by decaying wcurv (Fig. 14). 

away, potentially due to the instability of dot product from re-Numerical v.s analytical gradient. We visualize in Fig. 15

flection computation (Fig. 17). Our future work will explore the surface normals computed by using both numerical and more principled ways for intrinsic color decomposition. 

14





































38 anSc

RGB image

Segmentation mask 

Segmentation mask 

Ground truth point cloud

(IDR)

(Ours) 

Figure 12. We manually re-annotate the foreground object masks of the DTU dataset. We note that the object masks provided by IDR

miss the objects partially on Scan 83. The IDR masks also do not include the bricks holding objects, while ground truth point clouds have the brick. Our updated segmentation masks fix the above issues for better evaluation. 

Training time (s)

Inference time (s)

NeuS [41]

0.16

0.19

NG (Ours)

0.12

0.08

AG

0.10

0.08

Table 5. Computational time comparison between NeuS [41], 

Input

w/o image embedding

w/ image embedding

AG and NG using Nvidia V100 GPUs. Training time reported is per iteration and inference time reported is for surface extraction Figure 13. Qualitative comparison of normal maps without and of 1283 resolution. There is approximately a 1.2 times slowdown with per-image embedding. Floaters are greatly reduced with in training time of ours compared to AG. Ours is still faster than per-image embedding. 

NeuS due to the smaller-sized MLP used. For inference time, both ours and AG are more than 2 times faster than NeuS. 

tion in PyTorch. The experiments are conducted on NVIDIA V100 GPUs. We note that the training time per iteration when using numerical gradients is longer than using analytical gradients due to additional queries of SDF. Using numerical gradients experiences approximately a 1.2 times Input

w/o decaying 𝑤curv

w/ decaying  𝑤curv

slowdown compared to using analytical gradients. As NeuS

uses 8-layer MLP for SDF MLP and Neuralangelo uses

Figure 14. Qualitative comparison of without and with decaying 1-layer MLP, using numerical gradients is still faster than wcurv. Decaying wcurv reduces the regularization strength as ϵ

NeuS [41]. We also compare the inference time for surface decreases, thus preserving details better. 

extraction of 1283 resolution. As numerical gradients are used only for training, the speed for NG and AG are the same. 

0.5

NG and AG are more than 2 times faster than NeuS [41] due 0.4

to the shallow MLP. 

0.3

0.2

F. Derivation of Frequency Encoding

0.1

0.0

In the paper, we show that using analytical gradients for Input

AG

NG

Difference

higher-order derivatives of multi-resolution hash encoding Figure 15. Qualitative visualizations of surface normals com-suffers from gradient locality. We show in this section that puted from analytical gradient (AG) and numerical gradient Fourier frequency encoding [38], which empowers prior (NG). The results are nearly identical at the end of the optimization work [41, 47, 48] on neural surface reconstruction, does not due to the small step size ϵ. 

suffer from such locality issue. 

Given a 3D position xi, let the l-th Fourier frequency encoding be

Computation time. We compare the training and inference time in Table 5 across different setups using our implementa-γl(xi) = sin(2lπxi), cos(2lπxi). 

(12)
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Albedo  branch

Point location

SDF features

Φ(𝐶𝑎), 𝐶𝑎 ∈ ℝ3

Shading  branch

𝐶 = Φ 𝐶𝑎 + 𝐶𝑠 , 𝐶 ∈ ℝ3

Reflection direction

View direction

Appearance  encoding

(Optional)

Φ 𝐶𝑠 , 𝐶𝑠 ∈ ℝ

Figure 16. Color network design for intrinsic decomposition. The decomposition scheme includes albedo and shading images. 

Input

Ours

w/ intrinsic decomposition

Figure 17. Qualitative comparison of different color network designs. We find that the intrinsic decomposition we implemented lacks smoothness in regions with homogeneous color, while the color network proposed by IDR [48] produces smooth surfaces. 

The derivative of γl(xi) w.r.t. position can thus be calculated radiance fields. In Proceedings of the IEEE/CVF International as

Conference on Computer Vision, pages 5855–5864, 2021. 2

[2] Rui Chen, Songfang Han, Jing Xu, and Hao Su. Point-based

∂γl(xi) = 2lπ · cos(2lπx

multi-view stereo network. In Proceedings of the IEEE/CVF

i), −2lπ · sin(2lπxi). 

(13)

∂xi

international conference on computer vision, pages 1538–

1547, 2019. 2

We note that ∂γl(xi) is continuous across the space, and

∂xi

[3] François Darmon, Bénédicte Bascle, Jean-Clément Devaux, thus does not suffer from the gradient locality issue as the Pascal Monasse, and Mathieu Aubry. Improving neural im-multi-resolution hash encoding. Moreover, the position xi plicit surfaces geometry with patch warping. In Proceedings is present in the derivative, thus allowing for second-order of the IEEE/CVF Conference on Computer Vision and Pattern derivatives computation w.r.t. position for the curvature reg-Recognition, pages 6260–6269, 2022. 2, 3, 6, 8, 9, 14

ularization. 

[4] Jeremy S De Bonet and Paul Viola. Poxels: Probabilistic vox-While Fourier frequencies encoding is continuous, our elized volume reconstruction. In Proceedings of International coarse-to-fine optimization with varying step size in theory Conference on Computer Vision (ICCV), volume 2, 1999. 2

still anneals over the different frequencies when computing

[5] Qiancheng Fu, Qingshan Xu, Yew-Soon Ong, and Wenbing higher-order derivatives for more robust optimization. We Tao. Geo-neus: Geometry-consistent neural implicit sur-experiment this idea on the DTU benchmark [11] and ob-faces learning for multi-view reconstruction. arXiv preprint served an improved Chamfer distance: from 0.84 to 0.79. 

arXiv:2205.15848, 2022. 2, 3, 9

The improvement in surface reconstruction confirms the ben-

[6] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and efits of using a coarse-to-fine optimization framework. 

robust multiview stereopsis. IEEE transactions on pattern analysis and machine intelligence, 32(8):1362–1376, 2009. 
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